Metamath Proof Explorer


Theorem cbvrmov

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Alexander van der Vekens, 17-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypothesis cbvralv.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrmov
|- ( E* x e. A ph <-> E* y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralv.1
 |-  ( x = y -> ( ph <-> ps ) )
2 nfv
 |-  F/ y ph
3 nfv
 |-  F/ x ps
4 2 3 1 cbvrmo
 |-  ( E* x e. A ph <-> E* y e. A ps )