Metamath Proof Explorer


Theorem cbvrmovw

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmov with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvralvw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrmovw
|- ( E* x e. A ph <-> E* y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralvw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 1 anbi12d
 |-  ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ps ) ) )
4 3 cbvmovw
 |-  ( E* x ( x e. A /\ ph ) <-> E* y ( y e. A /\ ps ) )
5 df-rmo
 |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) )
6 df-rmo
 |-  ( E* y e. A ps <-> E* y ( y e. A /\ ps ) )
7 4 5 6 3bitr4i
 |-  ( E* x e. A ph <-> E* y e. A ps )