Metamath Proof Explorer


Theorem cbvrmowOLD

Description: Obsolete version of cbvrmow as of 23-May-2024. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrmowOLD.1
|- F/ y ph
cbvrmowOLD.2
|- F/ x ps
cbvrmowOLD.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrmowOLD
|- ( E* x e. A ph <-> E* y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvrmowOLD.1
 |-  F/ y ph
2 cbvrmowOLD.2
 |-  F/ x ps
3 cbvrmowOLD.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 cbvrexw
 |-  ( E. x e. A ph <-> E. y e. A ps )
5 1 2 3 cbvreuw
 |-  ( E! x e. A ph <-> E! y e. A ps )
6 4 5 imbi12i
 |-  ( ( E. x e. A ph -> E! x e. A ph ) <-> ( E. y e. A ps -> E! y e. A ps ) )
7 rmo5
 |-  ( E* x e. A ph <-> ( E. x e. A ph -> E! x e. A ph ) )
8 rmo5
 |-  ( E* y e. A ps <-> ( E. y e. A ps -> E! y e. A ps ) )
9 6 7 8 3bitr4i
 |-  ( E* x e. A ph <-> E* y e. A ps )