Metamath Proof Explorer


Theorem cbvsbc

Description: Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvsbcw when possible. (Contributed by Jeff Hankins, 19-Sep-2009) (Proof shortened by Andrew Salmon, 8-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvsbc.1
|- F/ y ph
cbvsbc.2
|- F/ x ps
cbvsbc.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvsbc
|- ( [. A / x ]. ph <-> [. A / y ]. ps )

Proof

Step Hyp Ref Expression
1 cbvsbc.1
 |-  F/ y ph
2 cbvsbc.2
 |-  F/ x ps
3 cbvsbc.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 cbvab
 |-  { x | ph } = { y | ps }
5 4 eleq2i
 |-  ( A e. { x | ph } <-> A e. { y | ps } )
6 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
7 df-sbc
 |-  ( [. A / y ]. ps <-> A e. { y | ps } )
8 5 6 7 3bitr4i
 |-  ( [. A / x ]. ph <-> [. A / y ]. ps )