Description: Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvsbcw when possible. (Contributed by Jeff Hankins, 19-Sep-2009) (Proof shortened by Andrew Salmon, 8-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvsbc.1 | |- F/ y ph |
|
cbvsbc.2 | |- F/ x ps |
||
cbvsbc.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | cbvsbc | |- ( [. A / x ]. ph <-> [. A / y ]. ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbc.1 | |- F/ y ph |
|
2 | cbvsbc.2 | |- F/ x ps |
|
3 | cbvsbc.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
4 | 1 2 3 | cbvab | |- { x | ph } = { y | ps } |
5 | 4 | eleq2i | |- ( A e. { x | ph } <-> A e. { y | ps } ) |
6 | df-sbc | |- ( [. A / x ]. ph <-> A e. { x | ph } ) |
|
7 | df-sbc | |- ( [. A / y ]. ps <-> A e. { y | ps } ) |
|
8 | 5 6 7 | 3bitr4i | |- ( [. A / x ]. ph <-> [. A / y ]. ps ) |