Metamath Proof Explorer


Theorem cbvsbcv

Description: Change the bound variable of a class substitution using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvsbcvw when possible. (Contributed by NM, 30-Sep-2008) (Revised by Mario Carneiro, 13-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypothesis cbvsbcv.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvsbcv
|- ( [. A / x ]. ph <-> [. A / y ]. ps )

Proof

Step Hyp Ref Expression
1 cbvsbcv.1
 |-  ( x = y -> ( ph <-> ps ) )
2 nfv
 |-  F/ y ph
3 nfv
 |-  F/ x ps
4 2 3 1 cbvsbc
 |-  ( [. A / x ]. ph <-> [. A / y ]. ps )