Metamath Proof Explorer


Theorem cbvsbcvw

Description: Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Sep-2008) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvsbcvw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvsbcvw
|- ( [. A / x ]. ph <-> [. A / y ]. ps )

Proof

Step Hyp Ref Expression
1 cbvsbcvw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 1 cbvabv
 |-  { x | ph } = { y | ps }
3 2 eleq2i
 |-  ( A e. { x | ph } <-> A e. { y | ps } )
4 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
5 df-sbc
 |-  ( [. A / y ]. ps <-> A e. { y | ps } )
6 3 4 5 3bitr4i
 |-  ( [. A / x ]. ph <-> [. A / y ]. ps )