Metamath Proof Explorer


Theorem cbvsbcw

Description: Change bound variables in a wff substitution. Version of cbvsbc with a disjoint variable condition, which does not require ax-13 . (Contributed by Jeff Hankins, 19-Sep-2009) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvsbcw.1
|- F/ y ph
cbvsbcw.2
|- F/ x ps
cbvsbcw.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvsbcw
|- ( [. A / x ]. ph <-> [. A / y ]. ps )

Proof

Step Hyp Ref Expression
1 cbvsbcw.1
 |-  F/ y ph
2 cbvsbcw.2
 |-  F/ x ps
3 cbvsbcw.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 cbvabw
 |-  { x | ph } = { y | ps }
5 4 eleq2i
 |-  ( A e. { x | ph } <-> A e. { y | ps } )
6 df-sbc
 |-  ( [. A / x ]. ph <-> A e. { x | ph } )
7 df-sbc
 |-  ( [. A / y ]. ps <-> A e. { y | ps } )
8 5 6 7 3bitr4i
 |-  ( [. A / x ]. ph <-> [. A / y ]. ps )