Metamath Proof Explorer


Theorem cbvsumi

Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005)

Ref Expression
Hypotheses cbvsumi.1
|- F/_ k B
cbvsumi.2
|- F/_ j C
cbvsumi.3
|- ( j = k -> B = C )
Assertion cbvsumi
|- sum_ j e. A B = sum_ k e. A C

Proof

Step Hyp Ref Expression
1 cbvsumi.1
 |-  F/_ k B
2 cbvsumi.2
 |-  F/_ j C
3 cbvsumi.3
 |-  ( j = k -> B = C )
4 nfcv
 |-  F/_ k A
5 nfcv
 |-  F/_ j A
6 3 4 5 1 2 cbvsum
 |-  sum_ j e. A B = sum_ k e. A C