Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999) (Proof shortened by Wolf Lammen, 6-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ccase.1 | |- ( ( ph /\ ps ) -> ta ) |
|
ccase.2 | |- ( ( ch /\ ps ) -> ta ) |
||
ccase.3 | |- ( ( ph /\ th ) -> ta ) |
||
ccase.4 | |- ( ( ch /\ th ) -> ta ) |
||
Assertion | ccase | |- ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccase.1 | |- ( ( ph /\ ps ) -> ta ) |
|
2 | ccase.2 | |- ( ( ch /\ ps ) -> ta ) |
|
3 | ccase.3 | |- ( ( ph /\ th ) -> ta ) |
|
4 | ccase.4 | |- ( ( ch /\ th ) -> ta ) |
|
5 | 1 2 | jaoian | |- ( ( ( ph \/ ch ) /\ ps ) -> ta ) |
6 | 3 4 | jaoian | |- ( ( ( ph \/ ch ) /\ th ) -> ta ) |
7 | 5 6 | jaodan | |- ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta ) |