Metamath Proof Explorer


Theorem ccase

Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999) (Proof shortened by Wolf Lammen, 6-Jan-2013)

Ref Expression
Hypotheses ccase.1
|- ( ( ph /\ ps ) -> ta )
ccase.2
|- ( ( ch /\ ps ) -> ta )
ccase.3
|- ( ( ph /\ th ) -> ta )
ccase.4
|- ( ( ch /\ th ) -> ta )
Assertion ccase
|- ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta )

Proof

Step Hyp Ref Expression
1 ccase.1
 |-  ( ( ph /\ ps ) -> ta )
2 ccase.2
 |-  ( ( ch /\ ps ) -> ta )
3 ccase.3
 |-  ( ( ph /\ th ) -> ta )
4 ccase.4
 |-  ( ( ch /\ th ) -> ta )
5 1 2 jaoian
 |-  ( ( ( ph \/ ch ) /\ ps ) -> ta )
6 3 4 jaoian
 |-  ( ( ( ph \/ ch ) /\ th ) -> ta )
7 5 6 jaodan
 |-  ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta )