Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999) (Proof shortened by Wolf Lammen, 6-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ccase.1 | |- ( ( ph /\ ps ) -> ta ) |
|
| ccase.2 | |- ( ( ch /\ ps ) -> ta ) |
||
| ccase.3 | |- ( ( ph /\ th ) -> ta ) |
||
| ccase.4 | |- ( ( ch /\ th ) -> ta ) |
||
| Assertion | ccase | |- ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccase.1 | |- ( ( ph /\ ps ) -> ta ) |
|
| 2 | ccase.2 | |- ( ( ch /\ ps ) -> ta ) |
|
| 3 | ccase.3 | |- ( ( ph /\ th ) -> ta ) |
|
| 4 | ccase.4 | |- ( ( ch /\ th ) -> ta ) |
|
| 5 | 1 2 | jaoian | |- ( ( ( ph \/ ch ) /\ ps ) -> ta ) |
| 6 | 3 4 | jaoian | |- ( ( ( ph \/ ch ) /\ th ) -> ta ) |
| 7 | 5 6 | jaodan | |- ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta ) |