Metamath Proof Explorer


Theorem ccase2

Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses ccase2.1
|- ( ( ph /\ ps ) -> ta )
ccase2.2
|- ( ch -> ta )
ccase2.3
|- ( th -> ta )
Assertion ccase2
|- ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta )

Proof

Step Hyp Ref Expression
1 ccase2.1
 |-  ( ( ph /\ ps ) -> ta )
2 ccase2.2
 |-  ( ch -> ta )
3 ccase2.3
 |-  ( th -> ta )
4 2 adantr
 |-  ( ( ch /\ ps ) -> ta )
5 3 adantl
 |-  ( ( ph /\ th ) -> ta )
6 3 adantl
 |-  ( ( ch /\ th ) -> ta )
7 1 4 5 6 ccase
 |-  ( ( ( ph \/ ch ) /\ ( ps \/ th ) ) -> ta )