Metamath Proof Explorer


Theorem ccased

Description: Deduction for combining cases. (Contributed by NM, 9-May-2004)

Ref Expression
Hypotheses ccased.1
|- ( ph -> ( ( ps /\ ch ) -> et ) )
ccased.2
|- ( ph -> ( ( th /\ ch ) -> et ) )
ccased.3
|- ( ph -> ( ( ps /\ ta ) -> et ) )
ccased.4
|- ( ph -> ( ( th /\ ta ) -> et ) )
Assertion ccased
|- ( ph -> ( ( ( ps \/ th ) /\ ( ch \/ ta ) ) -> et ) )

Proof

Step Hyp Ref Expression
1 ccased.1
 |-  ( ph -> ( ( ps /\ ch ) -> et ) )
2 ccased.2
 |-  ( ph -> ( ( th /\ ch ) -> et ) )
3 ccased.3
 |-  ( ph -> ( ( ps /\ ta ) -> et ) )
4 ccased.4
 |-  ( ph -> ( ( th /\ ta ) -> et ) )
5 1 com12
 |-  ( ( ps /\ ch ) -> ( ph -> et ) )
6 2 com12
 |-  ( ( th /\ ch ) -> ( ph -> et ) )
7 3 com12
 |-  ( ( ps /\ ta ) -> ( ph -> et ) )
8 4 com12
 |-  ( ( th /\ ta ) -> ( ph -> et ) )
9 5 6 7 8 ccase
 |-  ( ( ( ps \/ th ) /\ ( ch \/ ta ) ) -> ( ph -> et ) )
10 9 com12
 |-  ( ph -> ( ( ( ps \/ th ) /\ ( ch \/ ta ) ) -> et ) )