| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ccatlen |
|- ( ( S e. Word A /\ T e. Word B ) -> ( # ` ( S ++ T ) ) = ( ( # ` S ) + ( # ` T ) ) ) |
| 2 |
1
|
eqeq1d |
|- ( ( S e. Word A /\ T e. Word B ) -> ( ( # ` ( S ++ T ) ) = 0 <-> ( ( # ` S ) + ( # ` T ) ) = 0 ) ) |
| 3 |
|
ovex |
|- ( S ++ T ) e. _V |
| 4 |
|
hasheq0 |
|- ( ( S ++ T ) e. _V -> ( ( # ` ( S ++ T ) ) = 0 <-> ( S ++ T ) = (/) ) ) |
| 5 |
3 4
|
mp1i |
|- ( ( S e. Word A /\ T e. Word B ) -> ( ( # ` ( S ++ T ) ) = 0 <-> ( S ++ T ) = (/) ) ) |
| 6 |
|
lencl |
|- ( S e. Word A -> ( # ` S ) e. NN0 ) |
| 7 |
|
nn0re |
|- ( ( # ` S ) e. NN0 -> ( # ` S ) e. RR ) |
| 8 |
|
nn0ge0 |
|- ( ( # ` S ) e. NN0 -> 0 <_ ( # ` S ) ) |
| 9 |
7 8
|
jca |
|- ( ( # ` S ) e. NN0 -> ( ( # ` S ) e. RR /\ 0 <_ ( # ` S ) ) ) |
| 10 |
6 9
|
syl |
|- ( S e. Word A -> ( ( # ` S ) e. RR /\ 0 <_ ( # ` S ) ) ) |
| 11 |
|
lencl |
|- ( T e. Word B -> ( # ` T ) e. NN0 ) |
| 12 |
|
nn0re |
|- ( ( # ` T ) e. NN0 -> ( # ` T ) e. RR ) |
| 13 |
|
nn0ge0 |
|- ( ( # ` T ) e. NN0 -> 0 <_ ( # ` T ) ) |
| 14 |
12 13
|
jca |
|- ( ( # ` T ) e. NN0 -> ( ( # ` T ) e. RR /\ 0 <_ ( # ` T ) ) ) |
| 15 |
11 14
|
syl |
|- ( T e. Word B -> ( ( # ` T ) e. RR /\ 0 <_ ( # ` T ) ) ) |
| 16 |
|
add20 |
|- ( ( ( ( # ` S ) e. RR /\ 0 <_ ( # ` S ) ) /\ ( ( # ` T ) e. RR /\ 0 <_ ( # ` T ) ) ) -> ( ( ( # ` S ) + ( # ` T ) ) = 0 <-> ( ( # ` S ) = 0 /\ ( # ` T ) = 0 ) ) ) |
| 17 |
10 15 16
|
syl2an |
|- ( ( S e. Word A /\ T e. Word B ) -> ( ( ( # ` S ) + ( # ` T ) ) = 0 <-> ( ( # ` S ) = 0 /\ ( # ` T ) = 0 ) ) ) |
| 18 |
2 5 17
|
3bitr3d |
|- ( ( S e. Word A /\ T e. Word B ) -> ( ( S ++ T ) = (/) <-> ( ( # ` S ) = 0 /\ ( # ` T ) = 0 ) ) ) |
| 19 |
|
hasheq0 |
|- ( S e. Word A -> ( ( # ` S ) = 0 <-> S = (/) ) ) |
| 20 |
|
hasheq0 |
|- ( T e. Word B -> ( ( # ` T ) = 0 <-> T = (/) ) ) |
| 21 |
19 20
|
bi2anan9 |
|- ( ( S e. Word A /\ T e. Word B ) -> ( ( ( # ` S ) = 0 /\ ( # ` T ) = 0 ) <-> ( S = (/) /\ T = (/) ) ) ) |
| 22 |
18 21
|
bitrd |
|- ( ( S e. Word A /\ T e. Word B ) -> ( ( S ++ T ) = (/) <-> ( S = (/) /\ T = (/) ) ) ) |