Step |
Hyp |
Ref |
Expression |
1 |
|
ccatw2s1ccatws2 |
|- ( W e. Word V -> ( ( W ++ <" X "> ) ++ <" Y "> ) = ( W ++ <" X Y "> ) ) |
2 |
1
|
fveq1d |
|- ( W e. Word V -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` I ) = ( ( W ++ <" X Y "> ) ` I ) ) |
3 |
2
|
3ad2ant1 |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` I ) = ( ( W ++ <" X Y "> ) ` I ) ) |
4 |
|
simp1 |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> W e. Word V ) |
5 |
|
s2cli |
|- <" X Y "> e. Word _V |
6 |
5
|
a1i |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> <" X Y "> e. Word _V ) |
7 |
|
simp2 |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> I e. NN0 ) |
8 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
9 |
8
|
nn0zd |
|- ( W e. Word V -> ( # ` W ) e. ZZ ) |
10 |
9
|
3ad2ant1 |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( # ` W ) e. ZZ ) |
11 |
|
simp3 |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> I < ( # ` W ) ) |
12 |
|
elfzo0z |
|- ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. ZZ /\ I < ( # ` W ) ) ) |
13 |
7 10 11 12
|
syl3anbrc |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> I e. ( 0 ..^ ( # ` W ) ) ) |
14 |
|
ccatval1 |
|- ( ( W e. Word V /\ <" X Y "> e. Word _V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ <" X Y "> ) ` I ) = ( W ` I ) ) |
15 |
4 6 13 14
|
syl3anc |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( W ++ <" X Y "> ) ` I ) = ( W ` I ) ) |
16 |
3 15
|
eqtrd |
|- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` I ) = ( W ` I ) ) |