Metamath Proof Explorer


Theorem ccat2s1len

Description: The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by JJ, 14-Jan-2024)

Ref Expression
Assertion ccat2s1len
|- ( # ` ( <" X "> ++ <" Y "> ) ) = 2

Proof

Step Hyp Ref Expression
1 s1cli
 |-  <" X "> e. Word _V
2 s1cli
 |-  <" Y "> e. Word _V
3 ccatlen
 |-  ( ( <" X "> e. Word _V /\ <" Y "> e. Word _V ) -> ( # ` ( <" X "> ++ <" Y "> ) ) = ( ( # ` <" X "> ) + ( # ` <" Y "> ) ) )
4 s1len
 |-  ( # ` <" X "> ) = 1
5 s1len
 |-  ( # ` <" Y "> ) = 1
6 4 5 oveq12i
 |-  ( ( # ` <" X "> ) + ( # ` <" Y "> ) ) = ( 1 + 1 )
7 1p1e2
 |-  ( 1 + 1 ) = 2
8 6 7 eqtri
 |-  ( ( # ` <" X "> ) + ( # ` <" Y "> ) ) = 2
9 3 8 eqtrdi
 |-  ( ( <" X "> e. Word _V /\ <" Y "> e. Word _V ) -> ( # ` ( <" X "> ++ <" Y "> ) ) = 2 )
10 1 2 9 mp2an
 |-  ( # ` ( <" X "> ++ <" Y "> ) ) = 2