Step |
Hyp |
Ref |
Expression |
1 |
|
ccatdmss.1 |
|- ( ph -> A e. Word S ) |
2 |
|
ccatdmss.2 |
|- ( ph -> B e. Word S ) |
3 |
|
lencl |
|- ( A e. Word S -> ( # ` A ) e. NN0 ) |
4 |
1 3
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
5 |
4
|
nn0zd |
|- ( ph -> ( # ` A ) e. ZZ ) |
6 |
|
ccatcl |
|- ( ( A e. Word S /\ B e. Word S ) -> ( A ++ B ) e. Word S ) |
7 |
1 2 6
|
syl2anc |
|- ( ph -> ( A ++ B ) e. Word S ) |
8 |
|
lencl |
|- ( ( A ++ B ) e. Word S -> ( # ` ( A ++ B ) ) e. NN0 ) |
9 |
7 8
|
syl |
|- ( ph -> ( # ` ( A ++ B ) ) e. NN0 ) |
10 |
9
|
nn0zd |
|- ( ph -> ( # ` ( A ++ B ) ) e. ZZ ) |
11 |
4
|
nn0red |
|- ( ph -> ( # ` A ) e. RR ) |
12 |
|
lencl |
|- ( B e. Word S -> ( # ` B ) e. NN0 ) |
13 |
2 12
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
14 |
|
nn0addge1 |
|- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. NN0 ) -> ( # ` A ) <_ ( ( # ` A ) + ( # ` B ) ) ) |
15 |
11 13 14
|
syl2anc |
|- ( ph -> ( # ` A ) <_ ( ( # ` A ) + ( # ` B ) ) ) |
16 |
|
ccatlen |
|- ( ( A e. Word S /\ B e. Word S ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
17 |
1 2 16
|
syl2anc |
|- ( ph -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
18 |
15 17
|
breqtrrd |
|- ( ph -> ( # ` A ) <_ ( # ` ( A ++ B ) ) ) |
19 |
|
eluz2 |
|- ( ( # ` ( A ++ B ) ) e. ( ZZ>= ` ( # ` A ) ) <-> ( ( # ` A ) e. ZZ /\ ( # ` ( A ++ B ) ) e. ZZ /\ ( # ` A ) <_ ( # ` ( A ++ B ) ) ) ) |
20 |
5 10 18 19
|
syl3anbrc |
|- ( ph -> ( # ` ( A ++ B ) ) e. ( ZZ>= ` ( # ` A ) ) ) |
21 |
|
fzoss2 |
|- ( ( # ` ( A ++ B ) ) e. ( ZZ>= ` ( # ` A ) ) -> ( 0 ..^ ( # ` A ) ) C_ ( 0 ..^ ( # ` ( A ++ B ) ) ) ) |
22 |
20 21
|
syl |
|- ( ph -> ( 0 ..^ ( # ` A ) ) C_ ( 0 ..^ ( # ` ( A ++ B ) ) ) ) |
23 |
|
eqidd |
|- ( ph -> ( # ` A ) = ( # ` A ) ) |
24 |
23 1
|
wrdfd |
|- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> S ) |
25 |
24
|
fdmd |
|- ( ph -> dom A = ( 0 ..^ ( # ` A ) ) ) |
26 |
|
eqidd |
|- ( ph -> ( # ` ( A ++ B ) ) = ( # ` ( A ++ B ) ) ) |
27 |
26 7
|
wrdfd |
|- ( ph -> ( A ++ B ) : ( 0 ..^ ( # ` ( A ++ B ) ) ) --> S ) |
28 |
27
|
fdmd |
|- ( ph -> dom ( A ++ B ) = ( 0 ..^ ( # ` ( A ++ B ) ) ) ) |
29 |
22 25 28
|
3sstr4d |
|- ( ph -> dom A C_ dom ( A ++ B ) ) |