Metamath Proof Explorer


Theorem ccatfn

Description: The concatenation operator is a two-argument function. (Contributed by Mario Carneiro, 27-Sep-2015) (Proof shortened by AV, 29-Apr-2020)

Ref Expression
Assertion ccatfn
|- ++ Fn ( _V X. _V )

Proof

Step Hyp Ref Expression
1 df-concat
 |-  ++ = ( s e. _V , t e. _V |-> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) )
2 ovex
 |-  ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) e. _V
3 2 mptex
 |-  ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) e. _V
4 1 3 fnmpoi
 |-  ++ Fn ( _V X. _V )