Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( S e. V -> S e. _V ) |
2 |
|
elex |
|- ( T e. W -> T e. _V ) |
3 |
|
fveq2 |
|- ( s = S -> ( # ` s ) = ( # ` S ) ) |
4 |
|
fveq2 |
|- ( t = T -> ( # ` t ) = ( # ` T ) ) |
5 |
3 4
|
oveqan12d |
|- ( ( s = S /\ t = T ) -> ( ( # ` s ) + ( # ` t ) ) = ( ( # ` S ) + ( # ` T ) ) ) |
6 |
5
|
oveq2d |
|- ( ( s = S /\ t = T ) -> ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) = ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
7 |
3
|
oveq2d |
|- ( s = S -> ( 0 ..^ ( # ` s ) ) = ( 0 ..^ ( # ` S ) ) ) |
8 |
7
|
eleq2d |
|- ( s = S -> ( x e. ( 0 ..^ ( # ` s ) ) <-> x e. ( 0 ..^ ( # ` S ) ) ) ) |
9 |
8
|
adantr |
|- ( ( s = S /\ t = T ) -> ( x e. ( 0 ..^ ( # ` s ) ) <-> x e. ( 0 ..^ ( # ` S ) ) ) ) |
10 |
|
fveq1 |
|- ( s = S -> ( s ` x ) = ( S ` x ) ) |
11 |
10
|
adantr |
|- ( ( s = S /\ t = T ) -> ( s ` x ) = ( S ` x ) ) |
12 |
|
simpr |
|- ( ( s = S /\ t = T ) -> t = T ) |
13 |
3
|
oveq2d |
|- ( s = S -> ( x - ( # ` s ) ) = ( x - ( # ` S ) ) ) |
14 |
13
|
adantr |
|- ( ( s = S /\ t = T ) -> ( x - ( # ` s ) ) = ( x - ( # ` S ) ) ) |
15 |
12 14
|
fveq12d |
|- ( ( s = S /\ t = T ) -> ( t ` ( x - ( # ` s ) ) ) = ( T ` ( x - ( # ` S ) ) ) ) |
16 |
9 11 15
|
ifbieq12d |
|- ( ( s = S /\ t = T ) -> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) = if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) |
17 |
6 16
|
mpteq12dv |
|- ( ( s = S /\ t = T ) -> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) = ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) ) |
18 |
|
df-concat |
|- ++ = ( s e. _V , t e. _V |-> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) ) |
19 |
|
ovex |
|- ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) e. _V |
20 |
19
|
mptex |
|- ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) e. _V |
21 |
17 18 20
|
ovmpoa |
|- ( ( S e. _V /\ T e. _V ) -> ( S ++ T ) = ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) ) |
22 |
1 2 21
|
syl2an |
|- ( ( S e. V /\ T e. W ) -> ( S ++ T ) = ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) ) |