Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( # ` C ) = ( # ` C ) |
2 |
|
ccatopth |
|- ( ( ( C e. Word X /\ A e. Word X ) /\ ( C e. Word X /\ B e. Word X ) /\ ( # ` C ) = ( # ` C ) ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( ( C e. Word X /\ A e. Word X ) /\ ( C e. Word X /\ B e. Word X ) ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) |
4 |
3
|
3impdi |
|- ( ( C e. Word X /\ A e. Word X /\ B e. Word X ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) |
5 |
4
|
3coml |
|- ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) |
6 |
|
eqid |
|- C = C |
7 |
6
|
biantrur |
|- ( A = B <-> ( C = C /\ A = B ) ) |
8 |
5 7
|
bitr4di |
|- ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( C ++ A ) = ( C ++ B ) <-> A = B ) ) |