Step |
Hyp |
Ref |
Expression |
1 |
|
wrd0 |
|- (/) e. Word B |
2 |
|
ccatvalfn |
|- ( ( (/) e. Word B /\ S e. Word B ) -> ( (/) ++ S ) Fn ( 0 ..^ ( ( # ` (/) ) + ( # ` S ) ) ) ) |
3 |
1 2
|
mpan |
|- ( S e. Word B -> ( (/) ++ S ) Fn ( 0 ..^ ( ( # ` (/) ) + ( # ` S ) ) ) ) |
4 |
|
hash0 |
|- ( # ` (/) ) = 0 |
5 |
4
|
oveq1i |
|- ( ( # ` (/) ) + ( # ` S ) ) = ( 0 + ( # ` S ) ) |
6 |
|
lencl |
|- ( S e. Word B -> ( # ` S ) e. NN0 ) |
7 |
6
|
nn0cnd |
|- ( S e. Word B -> ( # ` S ) e. CC ) |
8 |
7
|
addid2d |
|- ( S e. Word B -> ( 0 + ( # ` S ) ) = ( # ` S ) ) |
9 |
5 8
|
eqtrid |
|- ( S e. Word B -> ( ( # ` (/) ) + ( # ` S ) ) = ( # ` S ) ) |
10 |
9
|
eqcomd |
|- ( S e. Word B -> ( # ` S ) = ( ( # ` (/) ) + ( # ` S ) ) ) |
11 |
10
|
oveq2d |
|- ( S e. Word B -> ( 0 ..^ ( # ` S ) ) = ( 0 ..^ ( ( # ` (/) ) + ( # ` S ) ) ) ) |
12 |
11
|
fneq2d |
|- ( S e. Word B -> ( ( (/) ++ S ) Fn ( 0 ..^ ( # ` S ) ) <-> ( (/) ++ S ) Fn ( 0 ..^ ( ( # ` (/) ) + ( # ` S ) ) ) ) ) |
13 |
3 12
|
mpbird |
|- ( S e. Word B -> ( (/) ++ S ) Fn ( 0 ..^ ( # ` S ) ) ) |
14 |
|
wrdfn |
|- ( S e. Word B -> S Fn ( 0 ..^ ( # ` S ) ) ) |
15 |
4
|
a1i |
|- ( S e. Word B -> ( # ` (/) ) = 0 ) |
16 |
15 9
|
oveq12d |
|- ( S e. Word B -> ( ( # ` (/) ) ..^ ( ( # ` (/) ) + ( # ` S ) ) ) = ( 0 ..^ ( # ` S ) ) ) |
17 |
16
|
eleq2d |
|- ( S e. Word B -> ( x e. ( ( # ` (/) ) ..^ ( ( # ` (/) ) + ( # ` S ) ) ) <-> x e. ( 0 ..^ ( # ` S ) ) ) ) |
18 |
17
|
biimpar |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> x e. ( ( # ` (/) ) ..^ ( ( # ` (/) ) + ( # ` S ) ) ) ) |
19 |
|
ccatval2 |
|- ( ( (/) e. Word B /\ S e. Word B /\ x e. ( ( # ` (/) ) ..^ ( ( # ` (/) ) + ( # ` S ) ) ) ) -> ( ( (/) ++ S ) ` x ) = ( S ` ( x - ( # ` (/) ) ) ) ) |
20 |
1 19
|
mp3an1 |
|- ( ( S e. Word B /\ x e. ( ( # ` (/) ) ..^ ( ( # ` (/) ) + ( # ` S ) ) ) ) -> ( ( (/) ++ S ) ` x ) = ( S ` ( x - ( # ` (/) ) ) ) ) |
21 |
18 20
|
syldan |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( (/) ++ S ) ` x ) = ( S ` ( x - ( # ` (/) ) ) ) ) |
22 |
4
|
oveq2i |
|- ( x - ( # ` (/) ) ) = ( x - 0 ) |
23 |
|
elfzoelz |
|- ( x e. ( 0 ..^ ( # ` S ) ) -> x e. ZZ ) |
24 |
23
|
adantl |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> x e. ZZ ) |
25 |
24
|
zcnd |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> x e. CC ) |
26 |
25
|
subid1d |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( x - 0 ) = x ) |
27 |
22 26
|
eqtrid |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( x - ( # ` (/) ) ) = x ) |
28 |
27
|
fveq2d |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( S ` ( x - ( # ` (/) ) ) ) = ( S ` x ) ) |
29 |
21 28
|
eqtrd |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( (/) ++ S ) ` x ) = ( S ` x ) ) |
30 |
13 14 29
|
eqfnfvd |
|- ( S e. Word B -> ( (/) ++ S ) = S ) |