| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( ( A ++ B ) = ( C ++ D ) -> ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) ) |
| 2 |
|
ccatlen |
|- ( ( A e. Word X /\ B e. Word X ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 4 |
|
simp3 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` B ) = ( # ` D ) ) |
| 5 |
4
|
oveq2d |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( ( # ` A ) + ( # ` D ) ) ) |
| 6 |
3 5
|
eqtrd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` D ) ) ) |
| 7 |
|
ccatlen |
|- ( ( C e. Word X /\ D e. Word X ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
| 9 |
6 8
|
eqeq12d |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) ) ) |
| 10 |
|
simp1l |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> A e. Word X ) |
| 11 |
|
lencl |
|- ( A e. Word X -> ( # ` A ) e. NN0 ) |
| 12 |
10 11
|
syl |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. NN0 ) |
| 13 |
12
|
nn0cnd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. CC ) |
| 14 |
|
simp2l |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> C e. Word X ) |
| 15 |
|
lencl |
|- ( C e. Word X -> ( # ` C ) e. NN0 ) |
| 16 |
14 15
|
syl |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. NN0 ) |
| 17 |
16
|
nn0cnd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. CC ) |
| 18 |
|
simp2r |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> D e. Word X ) |
| 19 |
|
lencl |
|- ( D e. Word X -> ( # ` D ) e. NN0 ) |
| 20 |
18 19
|
syl |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. NN0 ) |
| 21 |
20
|
nn0cnd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. CC ) |
| 22 |
13 17 21
|
addcan2d |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) <-> ( # ` A ) = ( # ` C ) ) ) |
| 23 |
9 22
|
bitrd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( # ` A ) = ( # ` C ) ) ) |
| 24 |
1 23
|
imbitrid |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( # ` A ) = ( # ` C ) ) ) |
| 25 |
|
ccatopth |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |
| 26 |
25
|
biimpd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) |
| 27 |
26
|
3expia |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( # ` A ) = ( # ` C ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) ) |
| 28 |
27
|
com23 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) |
| 29 |
28
|
3adant3 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) |
| 30 |
24 29
|
mpdd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) |
| 31 |
|
oveq12 |
|- ( ( A = C /\ B = D ) -> ( A ++ B ) = ( C ++ D ) ) |
| 32 |
30 31
|
impbid1 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |