Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( ( A ++ B ) = ( C ++ D ) -> ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) ) |
2 |
|
ccatlen |
|- ( ( A e. Word X /\ B e. Word X ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
3 |
2
|
3ad2ant1 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
4 |
|
simp3 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` B ) = ( # ` D ) ) |
5 |
4
|
oveq2d |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( ( # ` A ) + ( # ` D ) ) ) |
6 |
3 5
|
eqtrd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` D ) ) ) |
7 |
|
ccatlen |
|- ( ( C e. Word X /\ D e. Word X ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
8 |
7
|
3ad2ant2 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) ) ) |
10 |
|
simp1l |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> A e. Word X ) |
11 |
|
lencl |
|- ( A e. Word X -> ( # ` A ) e. NN0 ) |
12 |
10 11
|
syl |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. NN0 ) |
13 |
12
|
nn0cnd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. CC ) |
14 |
|
simp2l |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> C e. Word X ) |
15 |
|
lencl |
|- ( C e. Word X -> ( # ` C ) e. NN0 ) |
16 |
14 15
|
syl |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. NN0 ) |
17 |
16
|
nn0cnd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. CC ) |
18 |
|
simp2r |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> D e. Word X ) |
19 |
|
lencl |
|- ( D e. Word X -> ( # ` D ) e. NN0 ) |
20 |
18 19
|
syl |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. NN0 ) |
21 |
20
|
nn0cnd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. CC ) |
22 |
13 17 21
|
addcan2d |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) <-> ( # ` A ) = ( # ` C ) ) ) |
23 |
9 22
|
bitrd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( # ` A ) = ( # ` C ) ) ) |
24 |
1 23
|
syl5ib |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( # ` A ) = ( # ` C ) ) ) |
25 |
|
ccatopth |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |
26 |
25
|
biimpd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) |
27 |
26
|
3expia |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( # ` A ) = ( # ` C ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) ) |
28 |
27
|
com23 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) |
29 |
28
|
3adant3 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) |
30 |
24 29
|
mpdd |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) |
31 |
|
oveq12 |
|- ( ( A = C /\ B = D ) -> ( A ++ B ) = ( C ++ D ) ) |
32 |
30 31
|
impbid1 |
|- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |