| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( # ` C ) = ( # ` C ) | 
						
							| 2 |  | ccatopth2 |  |-  ( ( ( A e. Word X /\ C e. Word X ) /\ ( B e. Word X /\ C e. Word X ) /\ ( # ` C ) = ( # ` C ) ) -> ( ( A ++ C ) = ( B ++ C ) <-> ( A = B /\ C = C ) ) ) | 
						
							| 3 | 1 2 | mp3an3 |  |-  ( ( ( A e. Word X /\ C e. Word X ) /\ ( B e. Word X /\ C e. Word X ) ) -> ( ( A ++ C ) = ( B ++ C ) <-> ( A = B /\ C = C ) ) ) | 
						
							| 4 | 3 | 3impdir |  |-  ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( A ++ C ) = ( B ++ C ) <-> ( A = B /\ C = C ) ) ) | 
						
							| 5 |  | eqid |  |-  C = C | 
						
							| 6 | 5 | biantru |  |-  ( A = B <-> ( A = B /\ C = C ) ) | 
						
							| 7 | 4 6 | bitr4di |  |-  ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( A ++ C ) = ( B ++ C ) <-> A = B ) ) |