Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( # ` C ) = ( # ` C ) |
2 |
|
ccatopth2 |
|- ( ( ( A e. Word X /\ C e. Word X ) /\ ( B e. Word X /\ C e. Word X ) /\ ( # ` C ) = ( # ` C ) ) -> ( ( A ++ C ) = ( B ++ C ) <-> ( A = B /\ C = C ) ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( ( A e. Word X /\ C e. Word X ) /\ ( B e. Word X /\ C e. Word X ) ) -> ( ( A ++ C ) = ( B ++ C ) <-> ( A = B /\ C = C ) ) ) |
4 |
3
|
3impdir |
|- ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( A ++ C ) = ( B ++ C ) <-> ( A = B /\ C = C ) ) ) |
5 |
|
eqid |
|- C = C |
6 |
5
|
biantru |
|- ( A = B <-> ( A = B /\ C = C ) ) |
7 |
4 6
|
bitr4di |
|- ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( A ++ C ) = ( B ++ C ) <-> A = B ) ) |