Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( W = ( A ++ B ) -> ( W e. Word S <-> ( A ++ B ) e. Word S ) ) |
2 |
|
wrdv |
|- ( A e. Word X -> A e. Word _V ) |
3 |
|
wrdv |
|- ( B e. Word Y -> B e. Word _V ) |
4 |
|
ccatalpha |
|- ( ( A e. Word _V /\ B e. Word _V ) -> ( ( A ++ B ) e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) |
5 |
2 3 4
|
syl2an |
|- ( ( A e. Word X /\ B e. Word Y ) -> ( ( A ++ B ) e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) |
6 |
1 5
|
sylan9bbr |
|- ( ( ( A e. Word X /\ B e. Word Y ) /\ W = ( A ++ B ) ) -> ( W e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) |
7 |
|
simpl |
|- ( ( A e. Word S /\ B e. Word S ) -> A e. Word S ) |
8 |
6 7
|
syl6bi |
|- ( ( ( A e. Word X /\ B e. Word Y ) /\ W = ( A ++ B ) ) -> ( W e. Word S -> A e. Word S ) ) |
9 |
8
|
expimpd |
|- ( ( A e. Word X /\ B e. Word Y ) -> ( ( W = ( A ++ B ) /\ W e. Word S ) -> A e. Word S ) ) |
10 |
9
|
3impia |
|- ( ( A e. Word X /\ B e. Word Y /\ ( W = ( A ++ B ) /\ W e. Word S ) ) -> A e. Word S ) |