| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( W = ( A ++ B ) -> ( W e. Word S <-> ( A ++ B ) e. Word S ) ) | 
						
							| 2 |  | wrdv |  |-  ( A e. Word X -> A e. Word _V ) | 
						
							| 3 |  | wrdv |  |-  ( B e. Word Y -> B e. Word _V ) | 
						
							| 4 |  | ccatalpha |  |-  ( ( A e. Word _V /\ B e. Word _V ) -> ( ( A ++ B ) e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) | 
						
							| 5 | 2 3 4 | syl2an |  |-  ( ( A e. Word X /\ B e. Word Y ) -> ( ( A ++ B ) e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) | 
						
							| 6 | 1 5 | sylan9bbr |  |-  ( ( ( A e. Word X /\ B e. Word Y ) /\ W = ( A ++ B ) ) -> ( W e. Word S <-> ( A e. Word S /\ B e. Word S ) ) ) | 
						
							| 7 |  | simpl |  |-  ( ( A e. Word S /\ B e. Word S ) -> A e. Word S ) | 
						
							| 8 | 6 7 | biimtrdi |  |-  ( ( ( A e. Word X /\ B e. Word Y ) /\ W = ( A ++ B ) ) -> ( W e. Word S -> A e. Word S ) ) | 
						
							| 9 | 8 | expimpd |  |-  ( ( A e. Word X /\ B e. Word Y ) -> ( ( W = ( A ++ B ) /\ W e. Word S ) -> A e. Word S ) ) | 
						
							| 10 | 9 | 3impia |  |-  ( ( A e. Word X /\ B e. Word Y /\ ( W = ( A ++ B ) /\ W e. Word S ) ) -> A e. Word S ) |