Step |
Hyp |
Ref |
Expression |
1 |
|
wrd0 |
|- (/) e. Word B |
2 |
|
ccatvalfn |
|- ( ( S e. Word B /\ (/) e. Word B ) -> ( S ++ (/) ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) |
3 |
1 2
|
mpan2 |
|- ( S e. Word B -> ( S ++ (/) ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) |
4 |
|
hash0 |
|- ( # ` (/) ) = 0 |
5 |
4
|
oveq2i |
|- ( ( # ` S ) + ( # ` (/) ) ) = ( ( # ` S ) + 0 ) |
6 |
|
lencl |
|- ( S e. Word B -> ( # ` S ) e. NN0 ) |
7 |
6
|
nn0cnd |
|- ( S e. Word B -> ( # ` S ) e. CC ) |
8 |
7
|
addid1d |
|- ( S e. Word B -> ( ( # ` S ) + 0 ) = ( # ` S ) ) |
9 |
5 8
|
eqtr2id |
|- ( S e. Word B -> ( # ` S ) = ( ( # ` S ) + ( # ` (/) ) ) ) |
10 |
9
|
oveq2d |
|- ( S e. Word B -> ( 0 ..^ ( # ` S ) ) = ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) |
11 |
10
|
fneq2d |
|- ( S e. Word B -> ( ( S ++ (/) ) Fn ( 0 ..^ ( # ` S ) ) <-> ( S ++ (/) ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) ) |
12 |
3 11
|
mpbird |
|- ( S e. Word B -> ( S ++ (/) ) Fn ( 0 ..^ ( # ` S ) ) ) |
13 |
|
wrdfn |
|- ( S e. Word B -> S Fn ( 0 ..^ ( # ` S ) ) ) |
14 |
|
ccatval1 |
|- ( ( S e. Word B /\ (/) e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ (/) ) ` x ) = ( S ` x ) ) |
15 |
1 14
|
mp3an2 |
|- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ (/) ) ` x ) = ( S ` x ) ) |
16 |
12 13 15
|
eqfnfvd |
|- ( S e. Word B -> ( S ++ (/) ) = S ) |