Step |
Hyp |
Ref |
Expression |
1 |
|
ccatvalfn |
|- ( ( S e. Word B /\ T e. Word B ) -> ( S ++ T ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
2 |
|
lencl |
|- ( S e. Word B -> ( # ` S ) e. NN0 ) |
3 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
4 |
2 3
|
eleqtrdi |
|- ( S e. Word B -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
5 |
4
|
adantr |
|- ( ( S e. Word B /\ T e. Word B ) -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
6 |
2
|
nn0zd |
|- ( S e. Word B -> ( # ` S ) e. ZZ ) |
7 |
6
|
uzidd |
|- ( S e. Word B -> ( # ` S ) e. ( ZZ>= ` ( # ` S ) ) ) |
8 |
|
lencl |
|- ( T e. Word B -> ( # ` T ) e. NN0 ) |
9 |
|
uzaddcl |
|- ( ( ( # ` S ) e. ( ZZ>= ` ( # ` S ) ) /\ ( # ` T ) e. NN0 ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) |
11 |
|
elfzuzb |
|- ( ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) <-> ( ( # ` S ) e. ( ZZ>= ` 0 ) /\ ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) ) |
12 |
5 10 11
|
sylanbrc |
|- ( ( S e. Word B /\ T e. Word B ) -> ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) ) |
13 |
|
fzosplit |
|- ( ( # ` S ) e. ( 0 ... ( ( # ` S ) + ( # ` T ) ) ) -> ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) = ( ( 0 ..^ ( # ` S ) ) u. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( S e. Word B /\ T e. Word B ) -> ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) = ( ( 0 ..^ ( # ` S ) ) u. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) ) |
15 |
14
|
eleq2d |
|- ( ( S e. Word B /\ T e. Word B ) -> ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) <-> x e. ( ( 0 ..^ ( # ` S ) ) u. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) ) ) |
16 |
|
elun |
|- ( x e. ( ( 0 ..^ ( # ` S ) ) u. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) <-> ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) ) |
17 |
15 16
|
bitrdi |
|- ( ( S e. Word B /\ T e. Word B ) -> ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) <-> ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) ) ) |
18 |
|
ccatval1 |
|- ( ( S e. Word B /\ T e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ T ) ` x ) = ( S ` x ) ) |
19 |
18
|
3expa |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ T ) ` x ) = ( S ` x ) ) |
20 |
|
ssun1 |
|- ran S C_ ( ran S u. ran T ) |
21 |
|
wrdfn |
|- ( S e. Word B -> S Fn ( 0 ..^ ( # ` S ) ) ) |
22 |
21
|
adantr |
|- ( ( S e. Word B /\ T e. Word B ) -> S Fn ( 0 ..^ ( # ` S ) ) ) |
23 |
|
fnfvelrn |
|- ( ( S Fn ( 0 ..^ ( # ` S ) ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( S ` x ) e. ran S ) |
24 |
22 23
|
sylan |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( S ` x ) e. ran S ) |
25 |
20 24
|
sselid |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( S ` x ) e. ( ran S u. ran T ) ) |
26 |
19 25
|
eqeltrd |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ T ) ` x ) e. ( ran S u. ran T ) ) |
27 |
|
ccatval2 |
|- ( ( S e. Word B /\ T e. Word B /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) = ( T ` ( x - ( # ` S ) ) ) ) |
28 |
27
|
3expa |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) = ( T ` ( x - ( # ` S ) ) ) ) |
29 |
|
ssun2 |
|- ran T C_ ( ran S u. ran T ) |
30 |
|
wrdfn |
|- ( T e. Word B -> T Fn ( 0 ..^ ( # ` T ) ) ) |
31 |
30
|
adantl |
|- ( ( S e. Word B /\ T e. Word B ) -> T Fn ( 0 ..^ ( # ` T ) ) ) |
32 |
|
elfzouz |
|- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> x e. ( ZZ>= ` ( # ` S ) ) ) |
33 |
|
uznn0sub |
|- ( x e. ( ZZ>= ` ( # ` S ) ) -> ( x - ( # ` S ) ) e. NN0 ) |
34 |
32 33
|
syl |
|- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> ( x - ( # ` S ) ) e. NN0 ) |
35 |
34 3
|
eleqtrdi |
|- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> ( x - ( # ` S ) ) e. ( ZZ>= ` 0 ) ) |
36 |
35
|
adantl |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( x - ( # ` S ) ) e. ( ZZ>= ` 0 ) ) |
37 |
8
|
nn0zd |
|- ( T e. Word B -> ( # ` T ) e. ZZ ) |
38 |
37
|
ad2antlr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( # ` T ) e. ZZ ) |
39 |
|
elfzolt2 |
|- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> x < ( ( # ` S ) + ( # ` T ) ) ) |
40 |
39
|
adantl |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> x < ( ( # ` S ) + ( # ` T ) ) ) |
41 |
|
elfzoelz |
|- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> x e. ZZ ) |
42 |
41
|
zred |
|- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> x e. RR ) |
43 |
42
|
adantl |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> x e. RR ) |
44 |
2
|
nn0red |
|- ( S e. Word B -> ( # ` S ) e. RR ) |
45 |
44
|
ad2antrr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( # ` S ) e. RR ) |
46 |
8
|
nn0red |
|- ( T e. Word B -> ( # ` T ) e. RR ) |
47 |
46
|
ad2antlr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( # ` T ) e. RR ) |
48 |
43 45 47
|
ltsubadd2d |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( x - ( # ` S ) ) < ( # ` T ) <-> x < ( ( # ` S ) + ( # ` T ) ) ) ) |
49 |
40 48
|
mpbird |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( x - ( # ` S ) ) < ( # ` T ) ) |
50 |
|
elfzo2 |
|- ( ( x - ( # ` S ) ) e. ( 0 ..^ ( # ` T ) ) <-> ( ( x - ( # ` S ) ) e. ( ZZ>= ` 0 ) /\ ( # ` T ) e. ZZ /\ ( x - ( # ` S ) ) < ( # ` T ) ) ) |
51 |
36 38 49 50
|
syl3anbrc |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( x - ( # ` S ) ) e. ( 0 ..^ ( # ` T ) ) ) |
52 |
|
fnfvelrn |
|- ( ( T Fn ( 0 ..^ ( # ` T ) ) /\ ( x - ( # ` S ) ) e. ( 0 ..^ ( # ` T ) ) ) -> ( T ` ( x - ( # ` S ) ) ) e. ran T ) |
53 |
31 51 52
|
syl2an2r |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( T ` ( x - ( # ` S ) ) ) e. ran T ) |
54 |
29 53
|
sselid |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( T ` ( x - ( # ` S ) ) ) e. ( ran S u. ran T ) ) |
55 |
28 54
|
eqeltrd |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) e. ( ran S u. ran T ) ) |
56 |
26 55
|
jaodan |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) ) -> ( ( S ++ T ) ` x ) e. ( ran S u. ran T ) ) |
57 |
56
|
ex |
|- ( ( S e. Word B /\ T e. Word B ) -> ( ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) e. ( ran S u. ran T ) ) ) |
58 |
17 57
|
sylbid |
|- ( ( S e. Word B /\ T e. Word B ) -> ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) -> ( ( S ++ T ) ` x ) e. ( ran S u. ran T ) ) ) |
59 |
58
|
ralrimiv |
|- ( ( S e. Word B /\ T e. Word B ) -> A. x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ( ( S ++ T ) ` x ) e. ( ran S u. ran T ) ) |
60 |
|
ffnfv |
|- ( ( S ++ T ) : ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) --> ( ran S u. ran T ) <-> ( ( S ++ T ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) /\ A. x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ( ( S ++ T ) ` x ) e. ( ran S u. ran T ) ) ) |
61 |
1 59 60
|
sylanbrc |
|- ( ( S e. Word B /\ T e. Word B ) -> ( S ++ T ) : ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) --> ( ran S u. ran T ) ) |
62 |
61
|
frnd |
|- ( ( S e. Word B /\ T e. Word B ) -> ran ( S ++ T ) C_ ( ran S u. ran T ) ) |
63 |
|
fzoss2 |
|- ( ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) -> ( 0 ..^ ( # ` S ) ) C_ ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
64 |
10 63
|
syl |
|- ( ( S e. Word B /\ T e. Word B ) -> ( 0 ..^ ( # ` S ) ) C_ ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
65 |
64
|
sselda |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
66 |
|
fnfvelrn |
|- ( ( ( S ++ T ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) /\ x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) e. ran ( S ++ T ) ) |
67 |
1 65 66
|
syl2an2r |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ T ) ` x ) e. ran ( S ++ T ) ) |
68 |
19 67
|
eqeltrrd |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( S ` x ) e. ran ( S ++ T ) ) |
69 |
68
|
ralrimiva |
|- ( ( S e. Word B /\ T e. Word B ) -> A. x e. ( 0 ..^ ( # ` S ) ) ( S ` x ) e. ran ( S ++ T ) ) |
70 |
|
ffnfv |
|- ( S : ( 0 ..^ ( # ` S ) ) --> ran ( S ++ T ) <-> ( S Fn ( 0 ..^ ( # ` S ) ) /\ A. x e. ( 0 ..^ ( # ` S ) ) ( S ` x ) e. ran ( S ++ T ) ) ) |
71 |
22 69 70
|
sylanbrc |
|- ( ( S e. Word B /\ T e. Word B ) -> S : ( 0 ..^ ( # ` S ) ) --> ran ( S ++ T ) ) |
72 |
71
|
frnd |
|- ( ( S e. Word B /\ T e. Word B ) -> ran S C_ ran ( S ++ T ) ) |
73 |
|
ccatval3 |
|- ( ( S e. Word B /\ T e. Word B /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( x + ( # ` S ) ) ) = ( T ` x ) ) |
74 |
73
|
3expa |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( x + ( # ` S ) ) ) = ( T ` x ) ) |
75 |
|
elfzouz |
|- ( x e. ( 0 ..^ ( # ` T ) ) -> x e. ( ZZ>= ` 0 ) ) |
76 |
2
|
adantr |
|- ( ( S e. Word B /\ T e. Word B ) -> ( # ` S ) e. NN0 ) |
77 |
|
uzaddcl |
|- ( ( x e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. NN0 ) -> ( x + ( # ` S ) ) e. ( ZZ>= ` 0 ) ) |
78 |
75 76 77
|
syl2anr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( x + ( # ` S ) ) e. ( ZZ>= ` 0 ) ) |
79 |
|
nn0addcl |
|- ( ( ( # ` S ) e. NN0 /\ ( # ` T ) e. NN0 ) -> ( ( # ` S ) + ( # ` T ) ) e. NN0 ) |
80 |
2 8 79
|
syl2an |
|- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. NN0 ) |
81 |
80
|
nn0zd |
|- ( ( S e. Word B /\ T e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ZZ ) |
82 |
81
|
adantr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( # ` S ) + ( # ` T ) ) e. ZZ ) |
83 |
|
elfzonn0 |
|- ( x e. ( 0 ..^ ( # ` T ) ) -> x e. NN0 ) |
84 |
83
|
nn0cnd |
|- ( x e. ( 0 ..^ ( # ` T ) ) -> x e. CC ) |
85 |
2
|
nn0cnd |
|- ( S e. Word B -> ( # ` S ) e. CC ) |
86 |
85
|
adantr |
|- ( ( S e. Word B /\ T e. Word B ) -> ( # ` S ) e. CC ) |
87 |
|
addcom |
|- ( ( x e. CC /\ ( # ` S ) e. CC ) -> ( x + ( # ` S ) ) = ( ( # ` S ) + x ) ) |
88 |
84 86 87
|
syl2anr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( x + ( # ` S ) ) = ( ( # ` S ) + x ) ) |
89 |
83
|
nn0red |
|- ( x e. ( 0 ..^ ( # ` T ) ) -> x e. RR ) |
90 |
89
|
adantl |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> x e. RR ) |
91 |
46
|
ad2antlr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( # ` T ) e. RR ) |
92 |
44
|
ad2antrr |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( # ` S ) e. RR ) |
93 |
|
elfzolt2 |
|- ( x e. ( 0 ..^ ( # ` T ) ) -> x < ( # ` T ) ) |
94 |
93
|
adantl |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> x < ( # ` T ) ) |
95 |
90 91 92 94
|
ltadd2dd |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( # ` S ) + x ) < ( ( # ` S ) + ( # ` T ) ) ) |
96 |
88 95
|
eqbrtrd |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( x + ( # ` S ) ) < ( ( # ` S ) + ( # ` T ) ) ) |
97 |
|
elfzo2 |
|- ( ( x + ( # ` S ) ) e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) <-> ( ( x + ( # ` S ) ) e. ( ZZ>= ` 0 ) /\ ( ( # ` S ) + ( # ` T ) ) e. ZZ /\ ( x + ( # ` S ) ) < ( ( # ` S ) + ( # ` T ) ) ) ) |
98 |
78 82 96 97
|
syl3anbrc |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( x + ( # ` S ) ) e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
99 |
|
fnfvelrn |
|- ( ( ( S ++ T ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) /\ ( x + ( # ` S ) ) e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` ( x + ( # ` S ) ) ) e. ran ( S ++ T ) ) |
100 |
1 98 99
|
syl2an2r |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( x + ( # ` S ) ) ) e. ran ( S ++ T ) ) |
101 |
74 100
|
eqeltrrd |
|- ( ( ( S e. Word B /\ T e. Word B ) /\ x e. ( 0 ..^ ( # ` T ) ) ) -> ( T ` x ) e. ran ( S ++ T ) ) |
102 |
101
|
ralrimiva |
|- ( ( S e. Word B /\ T e. Word B ) -> A. x e. ( 0 ..^ ( # ` T ) ) ( T ` x ) e. ran ( S ++ T ) ) |
103 |
|
ffnfv |
|- ( T : ( 0 ..^ ( # ` T ) ) --> ran ( S ++ T ) <-> ( T Fn ( 0 ..^ ( # ` T ) ) /\ A. x e. ( 0 ..^ ( # ` T ) ) ( T ` x ) e. ran ( S ++ T ) ) ) |
104 |
31 102 103
|
sylanbrc |
|- ( ( S e. Word B /\ T e. Word B ) -> T : ( 0 ..^ ( # ` T ) ) --> ran ( S ++ T ) ) |
105 |
104
|
frnd |
|- ( ( S e. Word B /\ T e. Word B ) -> ran T C_ ran ( S ++ T ) ) |
106 |
72 105
|
unssd |
|- ( ( S e. Word B /\ T e. Word B ) -> ( ran S u. ran T ) C_ ran ( S ++ T ) ) |
107 |
62 106
|
eqssd |
|- ( ( S e. Word B /\ T e. Word B ) -> ran ( S ++ T ) = ( ran S u. ran T ) ) |