Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( W = ( U prefix ( # ` W ) ) -> ( W ++ <" ( lastS ` U ) "> ) = ( ( U prefix ( # ` W ) ) ++ <" ( lastS ` U ) "> ) ) |
2 |
1
|
adantl |
|- ( ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) /\ W = ( U prefix ( # ` W ) ) ) -> ( W ++ <" ( lastS ` U ) "> ) = ( ( U prefix ( # ` W ) ) ++ <" ( lastS ` U ) "> ) ) |
3 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
4 |
3
|
nn0cnd |
|- ( W e. Word V -> ( # ` W ) e. CC ) |
5 |
|
pncan1 |
|- ( ( # ` W ) e. CC -> ( ( ( # ` W ) + 1 ) - 1 ) = ( # ` W ) ) |
6 |
4 5
|
syl |
|- ( W e. Word V -> ( ( ( # ` W ) + 1 ) - 1 ) = ( # ` W ) ) |
7 |
6
|
eqcomd |
|- ( W e. Word V -> ( # ` W ) = ( ( ( # ` W ) + 1 ) - 1 ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( # ` W ) = ( ( ( # ` W ) + 1 ) - 1 ) ) |
9 |
|
oveq1 |
|- ( ( # ` U ) = ( ( # ` W ) + 1 ) -> ( ( # ` U ) - 1 ) = ( ( ( # ` W ) + 1 ) - 1 ) ) |
10 |
9
|
eqcomd |
|- ( ( # ` U ) = ( ( # ` W ) + 1 ) -> ( ( ( # ` W ) + 1 ) - 1 ) = ( ( # ` U ) - 1 ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( ( ( # ` W ) + 1 ) - 1 ) = ( ( # ` U ) - 1 ) ) |
12 |
8 11
|
eqtrd |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( # ` W ) = ( ( # ` U ) - 1 ) ) |
13 |
12
|
oveq2d |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( U prefix ( # ` W ) ) = ( U prefix ( ( # ` U ) - 1 ) ) ) |
14 |
13
|
oveq1d |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( ( U prefix ( # ` W ) ) ++ <" ( lastS ` U ) "> ) = ( ( U prefix ( ( # ` U ) - 1 ) ) ++ <" ( lastS ` U ) "> ) ) |
15 |
|
simp2 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> U e. Word V ) |
16 |
|
nn0p1gt0 |
|- ( ( # ` W ) e. NN0 -> 0 < ( ( # ` W ) + 1 ) ) |
17 |
3 16
|
syl |
|- ( W e. Word V -> 0 < ( ( # ` W ) + 1 ) ) |
18 |
17
|
3ad2ant1 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> 0 < ( ( # ` W ) + 1 ) ) |
19 |
|
breq2 |
|- ( ( # ` U ) = ( ( # ` W ) + 1 ) -> ( 0 < ( # ` U ) <-> 0 < ( ( # ` W ) + 1 ) ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( 0 < ( # ` U ) <-> 0 < ( ( # ` W ) + 1 ) ) ) |
21 |
18 20
|
mpbird |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> 0 < ( # ` U ) ) |
22 |
|
hashneq0 |
|- ( U e. Word V -> ( 0 < ( # ` U ) <-> U =/= (/) ) ) |
23 |
22
|
3ad2ant2 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( 0 < ( # ` U ) <-> U =/= (/) ) ) |
24 |
21 23
|
mpbid |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> U =/= (/) ) |
25 |
|
pfxlswccat |
|- ( ( U e. Word V /\ U =/= (/) ) -> ( ( U prefix ( ( # ` U ) - 1 ) ) ++ <" ( lastS ` U ) "> ) = U ) |
26 |
15 24 25
|
syl2anc |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( ( U prefix ( ( # ` U ) - 1 ) ) ++ <" ( lastS ` U ) "> ) = U ) |
27 |
14 26
|
eqtrd |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( ( U prefix ( # ` W ) ) ++ <" ( lastS ` U ) "> ) = U ) |
28 |
27
|
adantr |
|- ( ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) /\ W = ( U prefix ( # ` W ) ) ) -> ( ( U prefix ( # ` W ) ) ++ <" ( lastS ` U ) "> ) = U ) |
29 |
2 28
|
eqtr2d |
|- ( ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) /\ W = ( U prefix ( # ` W ) ) ) -> U = ( W ++ <" ( lastS ` U ) "> ) ) |
30 |
29
|
ex |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" ( lastS ` U ) "> ) ) ) |