Step |
Hyp |
Ref |
Expression |
1 |
|
ccats1pfxeq |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" ( lastS ` U ) "> ) ) ) |
2 |
|
simp1 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> W e. Word V ) |
3 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
4 |
|
nn0p1nn |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) + 1 ) e. NN ) |
5 |
3 4
|
syl |
|- ( W e. Word V -> ( ( # ` W ) + 1 ) e. NN ) |
6 |
5
|
3ad2ant1 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( ( # ` W ) + 1 ) e. NN ) |
7 |
|
3simpc |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) |
8 |
|
lswlgt0cl |
|- ( ( ( ( # ` W ) + 1 ) e. NN /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> ( lastS ` U ) e. V ) |
9 |
6 7 8
|
syl2anc |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( lastS ` U ) e. V ) |
10 |
9
|
s1cld |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> <" ( lastS ` U ) "> e. Word V ) |
11 |
|
eqidd |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( # ` W ) = ( # ` W ) ) |
12 |
|
pfxccatid |
|- ( ( W e. Word V /\ <" ( lastS ` U ) "> e. Word V /\ ( # ` W ) = ( # ` W ) ) -> ( ( W ++ <" ( lastS ` U ) "> ) prefix ( # ` W ) ) = W ) |
13 |
12
|
eqcomd |
|- ( ( W e. Word V /\ <" ( lastS ` U ) "> e. Word V /\ ( # ` W ) = ( # ` W ) ) -> W = ( ( W ++ <" ( lastS ` U ) "> ) prefix ( # ` W ) ) ) |
14 |
2 10 11 13
|
syl3anc |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> W = ( ( W ++ <" ( lastS ` U ) "> ) prefix ( # ` W ) ) ) |
15 |
|
oveq1 |
|- ( U = ( W ++ <" ( lastS ` U ) "> ) -> ( U prefix ( # ` W ) ) = ( ( W ++ <" ( lastS ` U ) "> ) prefix ( # ` W ) ) ) |
16 |
15
|
eqcomd |
|- ( U = ( W ++ <" ( lastS ` U ) "> ) -> ( ( W ++ <" ( lastS ` U ) "> ) prefix ( # ` W ) ) = ( U prefix ( # ` W ) ) ) |
17 |
14 16
|
sylan9eq |
|- ( ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) /\ U = ( W ++ <" ( lastS ` U ) "> ) ) -> W = ( U prefix ( # ` W ) ) ) |
18 |
17
|
ex |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( U = ( W ++ <" ( lastS ` U ) "> ) -> W = ( U prefix ( # ` W ) ) ) ) |
19 |
1 18
|
impbid |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) <-> U = ( W ++ <" ( lastS ` U ) "> ) ) ) |