Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> U e. Word V ) |
2 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
3 |
2
|
3ad2ant1 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( # ` W ) e. NN0 ) |
4 |
|
nn0p1nn |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) + 1 ) e. NN ) |
5 |
|
nngt0 |
|- ( ( ( # ` W ) + 1 ) e. NN -> 0 < ( ( # ` W ) + 1 ) ) |
6 |
3 4 5
|
3syl |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> 0 < ( ( # ` W ) + 1 ) ) |
7 |
|
breq2 |
|- ( ( # ` U ) = ( ( # ` W ) + 1 ) -> ( 0 < ( # ` U ) <-> 0 < ( ( # ` W ) + 1 ) ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( 0 < ( # ` U ) <-> 0 < ( ( # ` W ) + 1 ) ) ) |
9 |
6 8
|
mpbird |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> 0 < ( # ` U ) ) |
10 |
|
hashgt0n0 |
|- ( ( U e. Word V /\ 0 < ( # ` U ) ) -> U =/= (/) ) |
11 |
1 9 10
|
syl2anc |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> U =/= (/) ) |
12 |
|
lswcl |
|- ( ( U e. Word V /\ U =/= (/) ) -> ( lastS ` U ) e. V ) |
13 |
1 11 12
|
syl2anc |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( lastS ` U ) e. V ) |
14 |
|
ccats1pfxeq |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" ( lastS ` U ) "> ) ) ) |
15 |
|
s1eq |
|- ( s = ( lastS ` U ) -> <" s "> = <" ( lastS ` U ) "> ) |
16 |
15
|
oveq2d |
|- ( s = ( lastS ` U ) -> ( W ++ <" s "> ) = ( W ++ <" ( lastS ` U ) "> ) ) |
17 |
16
|
rspceeqv |
|- ( ( ( lastS ` U ) e. V /\ U = ( W ++ <" ( lastS ` U ) "> ) ) -> E. s e. V U = ( W ++ <" s "> ) ) |
18 |
13 14 17
|
syl6an |
|- ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> E. s e. V U = ( W ++ <" s "> ) ) ) |