| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> W e. Word V ) | 
						
							| 2 |  | s1cl |  |-  ( S e. V -> <" S "> e. Word V ) | 
						
							| 3 | 2 | 3ad2ant2 |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> <" S "> e. Word V ) | 
						
							| 4 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 5 | 4 | nn0zd |  |-  ( W e. Word V -> ( # ` W ) e. ZZ ) | 
						
							| 6 |  | elfzomin |  |-  ( ( # ` W ) e. ZZ -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + 1 ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( W e. Word V -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + 1 ) ) ) | 
						
							| 8 |  | s1len |  |-  ( # ` <" S "> ) = 1 | 
						
							| 9 | 8 | oveq2i |  |-  ( ( # ` W ) + ( # ` <" S "> ) ) = ( ( # ` W ) + 1 ) | 
						
							| 10 | 9 | oveq2i |  |-  ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) = ( ( # ` W ) ..^ ( ( # ` W ) + 1 ) ) | 
						
							| 11 | 7 10 | eleqtrrdi |  |-  ( W e. Word V -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( W e. Word V /\ I = ( # ` W ) ) -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) | 
						
							| 13 |  | eleq1 |  |-  ( I = ( # ` W ) -> ( I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) <-> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( W e. Word V /\ I = ( # ` W ) ) -> ( I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) <-> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) ) | 
						
							| 15 | 12 14 | mpbird |  |-  ( ( W e. Word V /\ I = ( # ` W ) ) -> I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) | 
						
							| 16 | 15 | 3adant2 |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) | 
						
							| 17 |  | ccatval2 |  |-  ( ( W e. Word V /\ <" S "> e. Word V /\ I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) -> ( ( W ++ <" S "> ) ` I ) = ( <" S "> ` ( I - ( # ` W ) ) ) ) | 
						
							| 18 | 1 3 16 17 | syl3anc |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( ( W ++ <" S "> ) ` I ) = ( <" S "> ` ( I - ( # ` W ) ) ) ) | 
						
							| 19 |  | oveq1 |  |-  ( I = ( # ` W ) -> ( I - ( # ` W ) ) = ( ( # ` W ) - ( # ` W ) ) ) | 
						
							| 20 | 19 | 3ad2ant3 |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( I - ( # ` W ) ) = ( ( # ` W ) - ( # ` W ) ) ) | 
						
							| 21 | 4 | nn0cnd |  |-  ( W e. Word V -> ( # ` W ) e. CC ) | 
						
							| 22 | 21 | subidd |  |-  ( W e. Word V -> ( ( # ` W ) - ( # ` W ) ) = 0 ) | 
						
							| 23 | 22 | 3ad2ant1 |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( ( # ` W ) - ( # ` W ) ) = 0 ) | 
						
							| 24 | 20 23 | eqtrd |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( I - ( # ` W ) ) = 0 ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( <" S "> ` ( I - ( # ` W ) ) ) = ( <" S "> ` 0 ) ) | 
						
							| 26 |  | s1fv |  |-  ( S e. V -> ( <" S "> ` 0 ) = S ) | 
						
							| 27 | 26 | 3ad2ant2 |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( <" S "> ` 0 ) = S ) | 
						
							| 28 | 18 25 27 | 3eqtrd |  |-  ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( ( W ++ <" S "> ) ` I ) = S ) |