Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> W e. Word V ) |
2 |
|
s1cl |
|- ( S e. V -> <" S "> e. Word V ) |
3 |
2
|
3ad2ant2 |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> <" S "> e. Word V ) |
4 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
5 |
4
|
nn0zd |
|- ( W e. Word V -> ( # ` W ) e. ZZ ) |
6 |
|
elfzomin |
|- ( ( # ` W ) e. ZZ -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + 1 ) ) ) |
7 |
5 6
|
syl |
|- ( W e. Word V -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + 1 ) ) ) |
8 |
|
s1len |
|- ( # ` <" S "> ) = 1 |
9 |
8
|
oveq2i |
|- ( ( # ` W ) + ( # ` <" S "> ) ) = ( ( # ` W ) + 1 ) |
10 |
9
|
oveq2i |
|- ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) = ( ( # ` W ) ..^ ( ( # ` W ) + 1 ) ) |
11 |
7 10
|
eleqtrrdi |
|- ( W e. Word V -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) |
12 |
11
|
adantr |
|- ( ( W e. Word V /\ I = ( # ` W ) ) -> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) |
13 |
|
eleq1 |
|- ( I = ( # ` W ) -> ( I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) <-> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) ) |
14 |
13
|
adantl |
|- ( ( W e. Word V /\ I = ( # ` W ) ) -> ( I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) <-> ( # ` W ) e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) ) |
15 |
12 14
|
mpbird |
|- ( ( W e. Word V /\ I = ( # ` W ) ) -> I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) |
16 |
15
|
3adant2 |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) |
17 |
|
ccatval2 |
|- ( ( W e. Word V /\ <" S "> e. Word V /\ I e. ( ( # ` W ) ..^ ( ( # ` W ) + ( # ` <" S "> ) ) ) ) -> ( ( W ++ <" S "> ) ` I ) = ( <" S "> ` ( I - ( # ` W ) ) ) ) |
18 |
1 3 16 17
|
syl3anc |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( ( W ++ <" S "> ) ` I ) = ( <" S "> ` ( I - ( # ` W ) ) ) ) |
19 |
|
oveq1 |
|- ( I = ( # ` W ) -> ( I - ( # ` W ) ) = ( ( # ` W ) - ( # ` W ) ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( I - ( # ` W ) ) = ( ( # ` W ) - ( # ` W ) ) ) |
21 |
4
|
nn0cnd |
|- ( W e. Word V -> ( # ` W ) e. CC ) |
22 |
21
|
subidd |
|- ( W e. Word V -> ( ( # ` W ) - ( # ` W ) ) = 0 ) |
23 |
22
|
3ad2ant1 |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( ( # ` W ) - ( # ` W ) ) = 0 ) |
24 |
20 23
|
eqtrd |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( I - ( # ` W ) ) = 0 ) |
25 |
24
|
fveq2d |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( <" S "> ` ( I - ( # ` W ) ) ) = ( <" S "> ` 0 ) ) |
26 |
|
s1fv |
|- ( S e. V -> ( <" S "> ` 0 ) = S ) |
27 |
26
|
3ad2ant2 |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( <" S "> ` 0 ) = S ) |
28 |
18 25 27
|
3eqtrd |
|- ( ( W e. Word V /\ S e. V /\ I = ( # ` W ) ) -> ( ( W ++ <" S "> ) ` I ) = S ) |