| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdcl |  |-  ( S e. Word A -> ( S substr <. X , Y >. ) e. Word A ) | 
						
							| 2 | 1 | adantr |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Y >. ) e. Word A ) | 
						
							| 3 |  | swrdcl |  |-  ( S e. Word A -> ( S substr <. Y , Z >. ) e. Word A ) | 
						
							| 4 | 3 | adantr |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. Y , Z >. ) e. Word A ) | 
						
							| 5 |  | ccatcl |  |-  ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) e. Word A ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) e. Word A ) | 
						
							| 7 |  | wrdfn |  |-  ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) e. Word A -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) ) | 
						
							| 9 |  | ccatlen |  |-  ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A ) -> ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) = ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) | 
						
							| 10 | 2 4 9 | syl2anc |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) = ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) | 
						
							| 11 |  | simpl |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> S e. Word A ) | 
						
							| 12 |  | simpr1 |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. ( 0 ... Y ) ) | 
						
							| 13 |  | simpr2 |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. ( 0 ... Z ) ) | 
						
							| 14 |  | simpr3 |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Z e. ( 0 ... ( # ` S ) ) ) | 
						
							| 15 |  | fzass4 |  |-  ( ( Y e. ( 0 ... ( # ` S ) ) /\ Z e. ( Y ... ( # ` S ) ) ) <-> ( Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) | 
						
							| 16 | 15 | biimpri |  |-  ( ( Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> ( Y e. ( 0 ... ( # ` S ) ) /\ Z e. ( Y ... ( # ` S ) ) ) ) | 
						
							| 17 | 16 | simpld |  |-  ( ( Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> Y e. ( 0 ... ( # ` S ) ) ) | 
						
							| 18 | 13 14 17 | syl2anc |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. ( 0 ... ( # ` S ) ) ) | 
						
							| 19 |  | swrdlen |  |-  ( ( S e. Word A /\ X e. ( 0 ... Y ) /\ Y e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. X , Y >. ) ) = ( Y - X ) ) | 
						
							| 20 | 11 12 18 19 | syl3anc |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( S substr <. X , Y >. ) ) = ( Y - X ) ) | 
						
							| 21 |  | swrdlen |  |-  ( ( S e. Word A /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. Y , Z >. ) ) = ( Z - Y ) ) | 
						
							| 22 | 21 | 3adant3r1 |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( S substr <. Y , Z >. ) ) = ( Z - Y ) ) | 
						
							| 23 | 20 22 | oveq12d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) = ( ( Y - X ) + ( Z - Y ) ) ) | 
						
							| 24 | 13 | elfzelzd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. ZZ ) | 
						
							| 25 | 24 | zcnd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. CC ) | 
						
							| 26 | 12 | elfzelzd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. ZZ ) | 
						
							| 27 | 26 | zcnd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. CC ) | 
						
							| 28 | 14 | elfzelzd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Z e. ZZ ) | 
						
							| 29 | 28 | zcnd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Z e. CC ) | 
						
							| 30 | 25 27 29 | npncan3d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( Y - X ) + ( Z - Y ) ) = ( Z - X ) ) | 
						
							| 31 | 10 23 30 | 3eqtrd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) = ( Z - X ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) = ( 0 ..^ ( Z - X ) ) ) | 
						
							| 33 | 32 | fneq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) <-> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( Z - X ) ) ) ) | 
						
							| 34 | 8 33 | mpbid |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( Z - X ) ) ) | 
						
							| 35 |  | swrdcl |  |-  ( S e. Word A -> ( S substr <. X , Z >. ) e. Word A ) | 
						
							| 36 | 35 | adantr |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Z >. ) e. Word A ) | 
						
							| 37 |  | wrdfn |  |-  ( ( S substr <. X , Z >. ) e. Word A -> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) ) | 
						
							| 39 |  | fzass4 |  |-  ( ( X e. ( 0 ... Z ) /\ Y e. ( X ... Z ) ) <-> ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) ) ) | 
						
							| 40 | 39 | biimpri |  |-  ( ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) ) -> ( X e. ( 0 ... Z ) /\ Y e. ( X ... Z ) ) ) | 
						
							| 41 | 40 | simpld |  |-  ( ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) ) -> X e. ( 0 ... Z ) ) | 
						
							| 42 | 12 13 41 | syl2anc |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. ( 0 ... Z ) ) | 
						
							| 43 |  | swrdlen |  |-  ( ( S e. Word A /\ X e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. X , Z >. ) ) = ( Z - X ) ) | 
						
							| 44 | 11 42 14 43 | syl3anc |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( S substr <. X , Z >. ) ) = ( Z - X ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) = ( 0 ..^ ( Z - X ) ) ) | 
						
							| 46 | 45 | fneq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Z >. ) Fn ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) <-> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( Z - X ) ) ) ) | 
						
							| 47 | 38 46 | mpbid |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( Z - X ) ) ) | 
						
							| 48 | 24 26 | zsubcld |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Y - X ) e. ZZ ) | 
						
							| 49 | 48 | anim1ci |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( x e. ( 0 ..^ ( Z - X ) ) /\ ( Y - X ) e. ZZ ) ) | 
						
							| 50 |  | fzospliti |  |-  ( ( x e. ( 0 ..^ ( Z - X ) ) /\ ( Y - X ) e. ZZ ) -> ( x e. ( 0 ..^ ( Y - X ) ) \/ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( x e. ( 0 ..^ ( Y - X ) ) \/ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) | 
						
							| 52 | 1 | ad2antrr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( S substr <. X , Y >. ) e. Word A ) | 
						
							| 53 | 3 | ad2antrr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( S substr <. Y , Z >. ) e. Word A ) | 
						
							| 54 | 20 | oveq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) = ( 0 ..^ ( Y - X ) ) ) | 
						
							| 55 | 54 | eleq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) <-> x e. ( 0 ..^ ( Y - X ) ) ) ) | 
						
							| 56 | 55 | biimpar |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> x e. ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) ) | 
						
							| 57 |  | ccatval1 |  |-  ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A /\ x e. ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. X , Y >. ) ` x ) ) | 
						
							| 58 | 52 53 56 57 | syl3anc |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. X , Y >. ) ` x ) ) | 
						
							| 59 |  | simpll |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> S e. Word A ) | 
						
							| 60 |  | simplr1 |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> X e. ( 0 ... Y ) ) | 
						
							| 61 | 18 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> Y e. ( 0 ... ( # ` S ) ) ) | 
						
							| 62 |  | simpr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> x e. ( 0 ..^ ( Y - X ) ) ) | 
						
							| 63 |  | swrdfv |  |-  ( ( ( S e. Word A /\ X e. ( 0 ... Y ) /\ Y e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( S substr <. X , Y >. ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 64 | 59 60 61 62 63 | syl31anc |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( S substr <. X , Y >. ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 65 | 58 64 | eqtrd |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 66 | 1 | ad2antrr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( S substr <. X , Y >. ) e. Word A ) | 
						
							| 67 | 3 | ad2antrr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( S substr <. Y , Z >. ) e. Word A ) | 
						
							| 68 | 23 30 | eqtrd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) = ( Z - X ) ) | 
						
							| 69 | 20 68 | oveq12d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) = ( ( Y - X ) ..^ ( Z - X ) ) ) | 
						
							| 70 | 69 | eleq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) <-> x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) | 
						
							| 71 | 70 | biimpar |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> x e. ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) ) | 
						
							| 72 |  | ccatval2 |  |-  ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A /\ x e. ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) ) | 
						
							| 73 | 66 67 71 72 | syl3anc |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) ) | 
						
							| 74 |  | simpll |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> S e. Word A ) | 
						
							| 75 |  | simplr2 |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> Y e. ( 0 ... Z ) ) | 
						
							| 76 |  | simplr3 |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> Z e. ( 0 ... ( # ` S ) ) ) | 
						
							| 77 | 20 | oveq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x - ( # ` ( S substr <. X , Y >. ) ) ) = ( x - ( Y - X ) ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x - ( # ` ( S substr <. X , Y >. ) ) ) = ( x - ( Y - X ) ) ) | 
						
							| 79 | 30 | oveq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) = ( ( Y - X ) ..^ ( Z - X ) ) ) | 
						
							| 80 | 79 | eleq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) <-> x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) | 
						
							| 81 | 80 | biimpar |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> x e. ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) ) | 
						
							| 82 | 28 24 | zsubcld |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Z - Y ) e. ZZ ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( Z - Y ) e. ZZ ) | 
						
							| 84 |  | fzosubel3 |  |-  ( ( x e. ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) /\ ( Z - Y ) e. ZZ ) -> ( x - ( Y - X ) ) e. ( 0 ..^ ( Z - Y ) ) ) | 
						
							| 85 | 81 83 84 | syl2anc |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x - ( Y - X ) ) e. ( 0 ..^ ( Z - Y ) ) ) | 
						
							| 86 | 78 85 | eqeltrd |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x - ( # ` ( S substr <. X , Y >. ) ) ) e. ( 0 ..^ ( Z - Y ) ) ) | 
						
							| 87 |  | swrdfv |  |-  ( ( ( S e. Word A /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) /\ ( x - ( # ` ( S substr <. X , Y >. ) ) ) e. ( 0 ..^ ( Z - Y ) ) ) -> ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) = ( S ` ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) ) ) | 
						
							| 88 | 74 75 76 86 87 | syl31anc |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) = ( S ` ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) ) ) | 
						
							| 89 | 77 | oveq1d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) = ( ( x - ( Y - X ) ) + Y ) ) | 
						
							| 90 | 89 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) = ( ( x - ( Y - X ) ) + Y ) ) | 
						
							| 91 |  | elfzoelz |  |-  ( x e. ( ( Y - X ) ..^ ( Z - X ) ) -> x e. ZZ ) | 
						
							| 92 | 91 | zcnd |  |-  ( x e. ( ( Y - X ) ..^ ( Z - X ) ) -> x e. CC ) | 
						
							| 93 | 92 | adantl |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> x e. CC ) | 
						
							| 94 | 25 27 | subcld |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Y - X ) e. CC ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( Y - X ) e. CC ) | 
						
							| 96 | 25 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> Y e. CC ) | 
						
							| 97 | 93 95 96 | subadd23d |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( x - ( Y - X ) ) + Y ) = ( x + ( Y - ( Y - X ) ) ) ) | 
						
							| 98 | 25 27 | nncand |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Y - ( Y - X ) ) = X ) | 
						
							| 99 | 98 | oveq2d |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x + ( Y - ( Y - X ) ) ) = ( x + X ) ) | 
						
							| 100 | 99 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x + ( Y - ( Y - X ) ) ) = ( x + X ) ) | 
						
							| 101 | 90 97 100 | 3eqtrd |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) = ( x + X ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( S ` ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) ) = ( S ` ( x + X ) ) ) | 
						
							| 103 | 73 88 102 | 3eqtrd |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 104 | 65 103 | jaodan |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ ( x e. ( 0 ..^ ( Y - X ) ) \/ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 105 | 51 104 | syldan |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 106 |  | simpll |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> S e. Word A ) | 
						
							| 107 | 42 | adantr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> X e. ( 0 ... Z ) ) | 
						
							| 108 |  | simplr3 |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> Z e. ( 0 ... ( # ` S ) ) ) | 
						
							| 109 |  | simpr |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> x e. ( 0 ..^ ( Z - X ) ) ) | 
						
							| 110 |  | swrdfv |  |-  ( ( ( S e. Word A /\ X e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( S substr <. X , Z >. ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 111 | 106 107 108 109 110 | syl31anc |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( S substr <. X , Z >. ) ` x ) = ( S ` ( x + X ) ) ) | 
						
							| 112 | 105 111 | eqtr4d |  |-  ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. X , Z >. ) ` x ) ) | 
						
							| 113 | 34 47 112 | eqfnfvd |  |-  ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) = ( S substr <. X , Z >. ) ) |