| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprll |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
| 2 |
|
simpr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> I < ( # ` A ) ) |
| 3 |
2
|
anim2i |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( 0 <_ I /\ I < ( # ` A ) ) ) |
| 4 |
|
simpr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> I e. ZZ ) |
| 5 |
|
0zd |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> 0 e. ZZ ) |
| 6 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
| 7 |
6
|
nn0zd |
|- ( A e. Word V -> ( # ` A ) e. ZZ ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` A ) e. ZZ ) |
| 9 |
|
elfzo |
|- ( ( I e. ZZ /\ 0 e. ZZ /\ ( # ` A ) e. ZZ ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
| 10 |
4 5 8 9
|
syl3anc |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
| 11 |
10
|
ad2antrl |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
| 12 |
3 11
|
mpbird |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> I e. ( 0 ..^ ( # ` A ) ) ) |
| 13 |
|
df-3an |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ I e. ( 0 ..^ ( # ` A ) ) ) ) |
| 14 |
1 12 13
|
sylanbrc |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) ) |
| 15 |
|
ccatval1 |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` I ) = ( A ` I ) ) |
| 16 |
15
|
eqcomd |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 17 |
14 16
|
syl |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 18 |
17
|
ex |
|- ( 0 <_ I -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 19 |
|
zre |
|- ( I e. ZZ -> I e. RR ) |
| 20 |
|
0red |
|- ( I e. ZZ -> 0 e. RR ) |
| 21 |
19 20
|
ltnled |
|- ( I e. ZZ -> ( I < 0 <-> -. 0 <_ I ) ) |
| 22 |
21
|
adantl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I < 0 <-> -. 0 <_ I ) ) |
| 23 |
|
simpl |
|- ( ( A e. Word V /\ B e. Word V ) -> A e. Word V ) |
| 24 |
23
|
anim1i |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( A e. Word V /\ I e. ZZ ) ) |
| 25 |
24
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A e. Word V /\ I e. ZZ ) ) |
| 26 |
|
animorrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( I < 0 \/ ( # ` A ) <_ I ) ) |
| 27 |
|
wrdsymb0 |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` A ) <_ I ) -> ( A ` I ) = (/) ) ) |
| 28 |
25 26 27
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A ` I ) = (/) ) |
| 29 |
|
ccatcl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
| 30 |
29
|
anim1i |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
| 31 |
30
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
| 32 |
|
animorrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) ) |
| 33 |
|
wrdsymb0 |
|- ( ( ( A ++ B ) e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) -> ( ( A ++ B ) ` I ) = (/) ) ) |
| 34 |
31 32 33
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( ( A ++ B ) ` I ) = (/) ) |
| 35 |
28 34
|
eqtr4d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 36 |
35
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I < 0 -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 37 |
22 36
|
sylbird |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( -. 0 <_ I -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 38 |
37
|
com12 |
|- ( -. 0 <_ I -> ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 39 |
38
|
adantrd |
|- ( -. 0 <_ I -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
| 40 |
18 39
|
pm2.61i |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
| 41 |
|
simprll |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
| 42 |
|
id |
|- ( I < ( ( # ` A ) + ( # ` B ) ) -> I < ( ( # ` A ) + ( # ` B ) ) ) |
| 43 |
6
|
nn0red |
|- ( A e. Word V -> ( # ` A ) e. RR ) |
| 44 |
|
lenlt |
|- ( ( ( # ` A ) e. RR /\ I e. RR ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
| 45 |
43 19 44
|
syl2an |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
| 46 |
45
|
adantlr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
| 47 |
46
|
biimpar |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( # ` A ) <_ I ) |
| 48 |
42 47
|
anim12ci |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 49 |
|
lencl |
|- ( B e. Word V -> ( # ` B ) e. NN0 ) |
| 50 |
49
|
nn0zd |
|- ( B e. Word V -> ( # ` B ) e. ZZ ) |
| 51 |
|
zaddcl |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 52 |
7 50 51
|
syl2an |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 53 |
52
|
adantr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 54 |
|
elfzo |
|- ( ( I e. ZZ /\ ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 55 |
4 8 53 54
|
syl3anc |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 56 |
55
|
ad2antrl |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 57 |
48 56
|
mpbird |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 58 |
|
df-3an |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 59 |
41 57 58
|
sylanbrc |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 60 |
|
ccatval2 |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` I ) = ( B ` ( I - ( # ` A ) ) ) ) |
| 61 |
60
|
eqcomd |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 62 |
59 61
|
syl |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 63 |
62
|
ex |
|- ( I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 64 |
49
|
nn0red |
|- ( B e. Word V -> ( # ` B ) e. RR ) |
| 65 |
|
readdcl |
|- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) -> ( ( # ` A ) + ( # ` B ) ) e. RR ) |
| 66 |
43 64 65
|
syl2an |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) + ( # ` B ) ) e. RR ) |
| 67 |
|
lenlt |
|- ( ( ( ( # ` A ) + ( # ` B ) ) e. RR /\ I e. RR ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> -. I < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 68 |
66 19 67
|
syl2an |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> -. I < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 69 |
|
simplr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> B e. Word V ) |
| 70 |
|
simpr |
|- ( ( A e. Word V /\ I e. ZZ ) -> I e. ZZ ) |
| 71 |
7
|
adantr |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( # ` A ) e. ZZ ) |
| 72 |
70 71
|
zsubcld |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( I - ( # ` A ) ) e. ZZ ) |
| 73 |
72
|
adantlr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I - ( # ` A ) ) e. ZZ ) |
| 74 |
69 73
|
jca |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) ) |
| 75 |
74
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) ) |
| 76 |
43
|
ad2antrr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` A ) e. RR ) |
| 77 |
64
|
ad2antlr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` B ) e. RR ) |
| 78 |
19
|
adantl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> I e. RR ) |
| 79 |
76 77 78
|
leaddsub2d |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> ( # ` B ) <_ ( I - ( # ` A ) ) ) ) |
| 80 |
79
|
biimpa |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` B ) <_ ( I - ( # ` A ) ) ) |
| 81 |
80
|
olcd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( I - ( # ` A ) ) < 0 \/ ( # ` B ) <_ ( I - ( # ` A ) ) ) ) |
| 82 |
|
wrdsymb0 |
|- ( ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) -> ( ( ( I - ( # ` A ) ) < 0 \/ ( # ` B ) <_ ( I - ( # ` A ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = (/) ) ) |
| 83 |
75 81 82
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B ` ( I - ( # ` A ) ) ) = (/) ) |
| 84 |
30
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
| 85 |
|
ccatlen |
|- ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 87 |
|
simpr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( # ` A ) + ( # ` B ) ) <_ I ) |
| 88 |
86 87
|
eqbrtrd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` ( A ++ B ) ) <_ I ) |
| 89 |
88
|
olcd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) ) |
| 90 |
84 89 33
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( A ++ B ) ` I ) = (/) ) |
| 91 |
83 90
|
eqtr4d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 92 |
91
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 93 |
68 92
|
sylbird |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 94 |
93
|
com12 |
|- ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 95 |
94
|
adantrd |
|- ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
| 96 |
63 95
|
pm2.61i |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
| 97 |
40 96
|
ifeqda |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) = ( ( A ++ B ) ` I ) ) |
| 98 |
97
|
eqcomd |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( A ++ B ) ` I ) = if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) ) |
| 99 |
98
|
3impa |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ZZ ) -> ( ( A ++ B ) ` I ) = if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) ) |