Step |
Hyp |
Ref |
Expression |
1 |
|
simprll |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
2 |
|
simpr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> I < ( # ` A ) ) |
3 |
2
|
anim2i |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( 0 <_ I /\ I < ( # ` A ) ) ) |
4 |
|
simpr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> I e. ZZ ) |
5 |
|
0zd |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> 0 e. ZZ ) |
6 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
7 |
6
|
nn0zd |
|- ( A e. Word V -> ( # ` A ) e. ZZ ) |
8 |
7
|
ad2antrr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` A ) e. ZZ ) |
9 |
|
elfzo |
|- ( ( I e. ZZ /\ 0 e. ZZ /\ ( # ` A ) e. ZZ ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
10 |
4 5 8 9
|
syl3anc |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
11 |
10
|
ad2antrl |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( I e. ( 0 ..^ ( # ` A ) ) <-> ( 0 <_ I /\ I < ( # ` A ) ) ) ) |
12 |
3 11
|
mpbird |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> I e. ( 0 ..^ ( # ` A ) ) ) |
13 |
|
df-3an |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ I e. ( 0 ..^ ( # ` A ) ) ) ) |
14 |
1 12 13
|
sylanbrc |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) ) |
15 |
|
ccatval1 |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` I ) = ( A ` I ) ) |
16 |
15
|
eqcomd |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( 0 ..^ ( # ` A ) ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
17 |
14 16
|
syl |
|- ( ( 0 <_ I /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
18 |
17
|
ex |
|- ( 0 <_ I -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
19 |
|
zre |
|- ( I e. ZZ -> I e. RR ) |
20 |
|
0red |
|- ( I e. ZZ -> 0 e. RR ) |
21 |
19 20
|
ltnled |
|- ( I e. ZZ -> ( I < 0 <-> -. 0 <_ I ) ) |
22 |
21
|
adantl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I < 0 <-> -. 0 <_ I ) ) |
23 |
|
simpl |
|- ( ( A e. Word V /\ B e. Word V ) -> A e. Word V ) |
24 |
23
|
anim1i |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( A e. Word V /\ I e. ZZ ) ) |
25 |
24
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A e. Word V /\ I e. ZZ ) ) |
26 |
|
animorrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( I < 0 \/ ( # ` A ) <_ I ) ) |
27 |
|
wrdsymb0 |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` A ) <_ I ) -> ( A ` I ) = (/) ) ) |
28 |
25 26 27
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A ` I ) = (/) ) |
29 |
|
ccatcl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
30 |
29
|
anim1i |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
31 |
30
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
32 |
|
animorrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) ) |
33 |
|
wrdsymb0 |
|- ( ( ( A ++ B ) e. Word V /\ I e. ZZ ) -> ( ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) -> ( ( A ++ B ) ` I ) = (/) ) ) |
34 |
31 32 33
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( ( A ++ B ) ` I ) = (/) ) |
35 |
28 34
|
eqtr4d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < 0 ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
36 |
35
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I < 0 -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
37 |
22 36
|
sylbird |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( -. 0 <_ I -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
38 |
37
|
com12 |
|- ( -. 0 <_ I -> ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
39 |
38
|
adantrd |
|- ( -. 0 <_ I -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) ) |
40 |
18 39
|
pm2.61i |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ I < ( # ` A ) ) -> ( A ` I ) = ( ( A ++ B ) ` I ) ) |
41 |
|
simprll |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
42 |
|
id |
|- ( I < ( ( # ` A ) + ( # ` B ) ) -> I < ( ( # ` A ) + ( # ` B ) ) ) |
43 |
6
|
nn0red |
|- ( A e. Word V -> ( # ` A ) e. RR ) |
44 |
|
lenlt |
|- ( ( ( # ` A ) e. RR /\ I e. RR ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
45 |
43 19 44
|
syl2an |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
46 |
45
|
adantlr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( # ` A ) <_ I <-> -. I < ( # ` A ) ) ) |
47 |
46
|
biimpar |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( # ` A ) <_ I ) |
48 |
42 47
|
anim12ci |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) |
49 |
|
lencl |
|- ( B e. Word V -> ( # ` B ) e. NN0 ) |
50 |
49
|
nn0zd |
|- ( B e. Word V -> ( # ` B ) e. ZZ ) |
51 |
|
zaddcl |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
52 |
7 50 51
|
syl2an |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
53 |
52
|
adantr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
54 |
|
elfzo |
|- ( ( I e. ZZ /\ ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
55 |
4 8 53 54
|
syl3anc |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
56 |
55
|
ad2antrl |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) <_ I /\ I < ( ( # ` A ) + ( # ` B ) ) ) ) ) |
57 |
48 56
|
mpbird |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
58 |
|
df-3an |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
59 |
41 57 58
|
sylanbrc |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
60 |
|
ccatval2 |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` I ) = ( B ` ( I - ( # ` A ) ) ) ) |
61 |
60
|
eqcomd |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
62 |
59 61
|
syl |
|- ( ( I < ( ( # ` A ) + ( # ` B ) ) /\ ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
63 |
62
|
ex |
|- ( I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
64 |
49
|
nn0red |
|- ( B e. Word V -> ( # ` B ) e. RR ) |
65 |
|
readdcl |
|- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) -> ( ( # ` A ) + ( # ` B ) ) e. RR ) |
66 |
43 64 65
|
syl2an |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) + ( # ` B ) ) e. RR ) |
67 |
|
lenlt |
|- ( ( ( ( # ` A ) + ( # ` B ) ) e. RR /\ I e. RR ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> -. I < ( ( # ` A ) + ( # ` B ) ) ) ) |
68 |
66 19 67
|
syl2an |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> -. I < ( ( # ` A ) + ( # ` B ) ) ) ) |
69 |
|
simplr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> B e. Word V ) |
70 |
|
simpr |
|- ( ( A e. Word V /\ I e. ZZ ) -> I e. ZZ ) |
71 |
7
|
adantr |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( # ` A ) e. ZZ ) |
72 |
70 71
|
zsubcld |
|- ( ( A e. Word V /\ I e. ZZ ) -> ( I - ( # ` A ) ) e. ZZ ) |
73 |
72
|
adantlr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( I - ( # ` A ) ) e. ZZ ) |
74 |
69 73
|
jca |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) ) |
75 |
74
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) ) |
76 |
43
|
ad2antrr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` A ) e. RR ) |
77 |
64
|
ad2antlr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( # ` B ) e. RR ) |
78 |
19
|
adantl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> I e. RR ) |
79 |
76 77 78
|
leaddsub2d |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I <-> ( # ` B ) <_ ( I - ( # ` A ) ) ) ) |
80 |
79
|
biimpa |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` B ) <_ ( I - ( # ` A ) ) ) |
81 |
80
|
olcd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( I - ( # ` A ) ) < 0 \/ ( # ` B ) <_ ( I - ( # ` A ) ) ) ) |
82 |
|
wrdsymb0 |
|- ( ( B e. Word V /\ ( I - ( # ` A ) ) e. ZZ ) -> ( ( ( I - ( # ` A ) ) < 0 \/ ( # ` B ) <_ ( I - ( # ` A ) ) ) -> ( B ` ( I - ( # ` A ) ) ) = (/) ) ) |
83 |
75 81 82
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B ` ( I - ( # ` A ) ) ) = (/) ) |
84 |
30
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( A ++ B ) e. Word V /\ I e. ZZ ) ) |
85 |
|
ccatlen |
|- ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
86 |
85
|
ad2antrr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
87 |
|
simpr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( # ` A ) + ( # ` B ) ) <_ I ) |
88 |
86 87
|
eqbrtrd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( # ` ( A ++ B ) ) <_ I ) |
89 |
88
|
olcd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( I < 0 \/ ( # ` ( A ++ B ) ) <_ I ) ) |
90 |
84 89 33
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( ( A ++ B ) ` I ) = (/) ) |
91 |
83 90
|
eqtr4d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ ( ( # ` A ) + ( # ` B ) ) <_ I ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
92 |
91
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( ( # ` A ) + ( # ` B ) ) <_ I -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
93 |
68 92
|
sylbird |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
94 |
93
|
com12 |
|- ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
95 |
94
|
adantrd |
|- ( -. I < ( ( # ` A ) + ( # ` B ) ) -> ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) ) |
96 |
63 95
|
pm2.61i |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) /\ -. I < ( # ` A ) ) -> ( B ` ( I - ( # ` A ) ) ) = ( ( A ++ B ) ` I ) ) |
97 |
40 96
|
ifeqda |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) = ( ( A ++ B ) ` I ) ) |
98 |
97
|
eqcomd |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ I e. ZZ ) -> ( ( A ++ B ) ` I ) = if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) ) |
99 |
98
|
3impa |
|- ( ( A e. Word V /\ B e. Word V /\ I e. ZZ ) -> ( ( A ++ B ) ` I ) = if ( I < ( # ` A ) , ( A ` I ) , ( B ` ( I - ( # ` A ) ) ) ) ) |