Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
2 |
1
|
nn0zd |
|- ( A e. Word V -> ( # ` A ) e. ZZ ) |
3 |
|
lennncl |
|- ( ( B e. Word V /\ B =/= (/) ) -> ( # ` B ) e. NN ) |
4 |
|
simpl |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) e. ZZ ) |
5 |
|
nnz |
|- ( ( # ` B ) e. NN -> ( # ` B ) e. ZZ ) |
6 |
|
zaddcl |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
7 |
5 6
|
sylan2 |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
8 |
|
nngt0 |
|- ( ( # ` B ) e. NN -> 0 < ( # ` B ) ) |
9 |
8
|
adantl |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> 0 < ( # ` B ) ) |
10 |
|
nnre |
|- ( ( # ` B ) e. NN -> ( # ` B ) e. RR ) |
11 |
|
zre |
|- ( ( # ` A ) e. ZZ -> ( # ` A ) e. RR ) |
12 |
|
ltaddpos |
|- ( ( ( # ` B ) e. RR /\ ( # ` A ) e. RR ) -> ( 0 < ( # ` B ) <-> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
13 |
10 11 12
|
syl2anr |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( 0 < ( # ` B ) <-> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
14 |
9 13
|
mpbid |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) |
15 |
4 7 14
|
3jca |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
16 |
2 3 15
|
syl2an |
|- ( ( A e. Word V /\ ( B e. Word V /\ B =/= (/) ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
17 |
16
|
3impb |
|- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
18 |
|
fzolb |
|- ( ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
19 |
17 18
|
sylibr |
|- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
20 |
|
ccatval2 |
|- ( ( A e. Word V /\ B e. Word V /\ ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` ( ( # ` A ) - ( # ` A ) ) ) ) |
21 |
19 20
|
syld3an3 |
|- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` ( ( # ` A ) - ( # ` A ) ) ) ) |
22 |
1
|
nn0cnd |
|- ( A e. Word V -> ( # ` A ) e. CC ) |
23 |
22
|
subidd |
|- ( A e. Word V -> ( ( # ` A ) - ( # ` A ) ) = 0 ) |
24 |
23
|
fveq2d |
|- ( A e. Word V -> ( B ` ( ( # ` A ) - ( # ` A ) ) ) = ( B ` 0 ) ) |
25 |
24
|
3ad2ant1 |
|- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( B ` ( ( # ` A ) - ( # ` A ) ) ) = ( B ` 0 ) ) |
26 |
21 25
|
eqtrd |
|- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) |