Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
|- ( S e. Word B -> ( # ` S ) e. NN0 ) |
2 |
1
|
nn0zd |
|- ( S e. Word B -> ( # ` S ) e. ZZ ) |
3 |
2
|
anim1ci |
|- ( ( S e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( I e. ( 0 ..^ ( # ` T ) ) /\ ( # ` S ) e. ZZ ) ) |
4 |
3
|
3adant2 |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( I e. ( 0 ..^ ( # ` T ) ) /\ ( # ` S ) e. ZZ ) ) |
5 |
|
fzo0addelr |
|- ( ( I e. ( 0 ..^ ( # ` T ) ) /\ ( # ` S ) e. ZZ ) -> ( I + ( # ` S ) ) e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
6 |
4 5
|
syl |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( I + ( # ` S ) ) e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
7 |
|
ccatval2 |
|- ( ( S e. Word B /\ T e. Word B /\ ( I + ( # ` S ) ) e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` ( I + ( # ` S ) ) ) = ( T ` ( ( I + ( # ` S ) ) - ( # ` S ) ) ) ) |
8 |
6 7
|
syld3an3 |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( I + ( # ` S ) ) ) = ( T ` ( ( I + ( # ` S ) ) - ( # ` S ) ) ) ) |
9 |
|
elfzoelz |
|- ( I e. ( 0 ..^ ( # ` T ) ) -> I e. ZZ ) |
10 |
9
|
3ad2ant3 |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> I e. ZZ ) |
11 |
10
|
zcnd |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> I e. CC ) |
12 |
1
|
3ad2ant1 |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( # ` S ) e. NN0 ) |
13 |
12
|
nn0cnd |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( # ` S ) e. CC ) |
14 |
11 13
|
pncand |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( ( I + ( # ` S ) ) - ( # ` S ) ) = I ) |
15 |
14
|
fveq2d |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( T ` ( ( I + ( # ` S ) ) - ( # ` S ) ) ) = ( T ` I ) ) |
16 |
8 15
|
eqtrd |
|- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( I + ( # ` S ) ) ) = ( T ` I ) ) |