Metamath Proof Explorer


Theorem ccatw2s1assOLD

Description: Obsolete version of ccatw2s1ass as of 29-Jan-2024. Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ccatw2s1assOLD
|- ( ( W e. Word V /\ X e. V /\ Y e. V ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) = ( W ++ ( <" X "> ++ <" Y "> ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( W e. Word V -> W e. Word V )
2 s1cl
 |-  ( X e. V -> <" X "> e. Word V )
3 s1cl
 |-  ( Y e. V -> <" Y "> e. Word V )
4 ccatass
 |-  ( ( W e. Word V /\ <" X "> e. Word V /\ <" Y "> e. Word V ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) = ( W ++ ( <" X "> ++ <" Y "> ) ) )
5 1 2 3 4 syl3an
 |-  ( ( W e. Word V /\ X e. V /\ Y e. V ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) = ( W ++ ( <" X "> ++ <" Y "> ) ) )