Metamath Proof Explorer


Theorem ccatw2s1cl

Description: The concatenation of a word with two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatw2s1cl
|- ( ( W e. Word V /\ X e. V /\ Y e. V ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. Word V )

Proof

Step Hyp Ref Expression
1 ccatws1cl
 |-  ( ( W e. Word V /\ X e. V ) -> ( W ++ <" X "> ) e. Word V )
2 ccatws1cl
 |-  ( ( ( W ++ <" X "> ) e. Word V /\ Y e. V ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. Word V )
3 1 2 stoic3
 |-  ( ( W e. Word V /\ X e. V /\ Y e. V ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. Word V )