Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1cl |
|- ( ( W e. Word V /\ X e. V ) -> ( W ++ <" X "> ) e. Word V ) |
2 |
1
|
ad2ant2r |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> ( W ++ <" X "> ) e. Word V ) |
3 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
4 |
|
fzonn0p1 |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
5 |
3 4
|
syl |
|- ( W e. Word V -> ( # ` W ) e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
6 |
5
|
adantr |
|- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( # ` W ) e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
7 |
|
simpr |
|- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( # ` W ) = N ) |
8 |
7
|
eqcomd |
|- ( ( W e. Word V /\ ( # ` W ) = N ) -> N = ( # ` W ) ) |
9 |
|
ccatws1len |
|- ( W e. Word V -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
10 |
9
|
adantr |
|- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
11 |
10
|
oveq2d |
|- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) = ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
12 |
6 8 11
|
3eltr4d |
|- ( ( W e. Word V /\ ( # ` W ) = N ) -> N e. ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) ) |
13 |
12
|
adantr |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> N e. ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) ) |
14 |
|
ccats1val1 |
|- ( ( ( W ++ <" X "> ) e. Word V /\ N e. ( 0 ..^ ( # ` ( W ++ <" X "> ) ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` N ) = ( ( W ++ <" X "> ) ` N ) ) |
15 |
2 13 14
|
syl2anc |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` N ) = ( ( W ++ <" X "> ) ` N ) ) |
16 |
|
simpll |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> W e. Word V ) |
17 |
|
simprl |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> X e. V ) |
18 |
|
eqcom |
|- ( ( # ` W ) = N <-> N = ( # ` W ) ) |
19 |
18
|
biimpi |
|- ( ( # ` W ) = N -> N = ( # ` W ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> N = ( # ` W ) ) |
21 |
|
ccats1val2 |
|- ( ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
22 |
16 17 20 21
|
syl3anc |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
23 |
15 22
|
eqtrd |
|- ( ( ( W e. Word V /\ ( # ` W ) = N ) /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` N ) = X ) |