Metamath Proof Explorer


Theorem ccatws1cl

Description: The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatws1cl
|- ( ( W e. Word V /\ X e. V ) -> ( W ++ <" X "> ) e. Word V )

Proof

Step Hyp Ref Expression
1 s1cl
 |-  ( X e. V -> <" X "> e. Word V )
2 ccatcl
 |-  ( ( W e. Word V /\ <" X "> e. Word V ) -> ( W ++ <" X "> ) e. Word V )
3 1 2 sylan2
 |-  ( ( W e. Word V /\ X e. V ) -> ( W ++ <" X "> ) e. Word V )