Metamath Proof Explorer


Theorem ccatws1clv

Description: The concatenation of a word with a singleton word (which can be over a different alphabet) is a word. (Contributed by AV, 5-Mar-2022)

Ref Expression
Assertion ccatws1clv
|- ( W e. Word V -> ( W ++ <" X "> ) e. Word _V )

Proof

Step Hyp Ref Expression
1 wrdv
 |-  ( W e. Word V -> W e. Word _V )
2 s1cli
 |-  <" X "> e. Word _V
3 ccatcl
 |-  ( ( W e. Word _V /\ <" X "> e. Word _V ) -> ( W ++ <" X "> ) e. Word _V )
4 1 2 3 sylancl
 |-  ( W e. Word V -> ( W ++ <" X "> ) e. Word _V )