Metamath Proof Explorer


Theorem ccatws1len

Description: The length of the concatenation of a word with a singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by AV, 4-Mar-2022)

Ref Expression
Assertion ccatws1len
|- ( W e. Word V -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) )

Proof

Step Hyp Ref Expression
1 s1cli
 |-  <" X "> e. Word _V
2 ccatlen
 |-  ( ( W e. Word V /\ <" X "> e. Word _V ) -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + ( # ` <" X "> ) ) )
3 1 2 mpan2
 |-  ( W e. Word V -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + ( # ` <" X "> ) ) )
4 s1len
 |-  ( # ` <" X "> ) = 1
5 4 oveq2i
 |-  ( ( # ` W ) + ( # ` <" X "> ) ) = ( ( # ` W ) + 1 )
6 3 5 eqtrdi
 |-  ( W e. Word V -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) )