Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1len |
|- ( W e. Word V -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
2 |
1
|
adantr |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) |
3 |
2
|
eqeq1d |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( ( # ` W ) + 1 ) = ( N + 1 ) ) ) |
4 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
5 |
4
|
nn0cnd |
|- ( W e. Word V -> ( # ` W ) e. CC ) |
6 |
5
|
adantr |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( # ` W ) e. CC ) |
7 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
8 |
7
|
adantl |
|- ( ( W e. Word V /\ N e. NN0 ) -> N e. CC ) |
9 |
|
1cnd |
|- ( ( W e. Word V /\ N e. NN0 ) -> 1 e. CC ) |
10 |
6 8 9
|
addcan2d |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( ( # ` W ) + 1 ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |
11 |
3 10
|
bitrd |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |