| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatws1len |  |-  ( W e. Word V -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( # ` ( W ++ <" X "> ) ) = ( ( # ` W ) + 1 ) ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( ( # ` W ) + 1 ) = ( N + 1 ) ) ) | 
						
							| 4 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 5 | 4 | nn0cnd |  |-  ( W e. Word V -> ( # ` W ) e. CC ) | 
						
							| 6 | 5 | adantr |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( # ` W ) e. CC ) | 
						
							| 7 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 8 | 7 | adantl |  |-  ( ( W e. Word V /\ N e. NN0 ) -> N e. CC ) | 
						
							| 9 |  | 1cnd |  |-  ( ( W e. Word V /\ N e. NN0 ) -> 1 e. CC ) | 
						
							| 10 | 6 8 9 | addcan2d |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( ( # ` W ) + 1 ) = ( N + 1 ) <-> ( # ` W ) = N ) ) | 
						
							| 11 | 3 10 | bitrd |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |