| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difeq2 |  |-  ( x = U. y -> ( A \ x ) = ( A \ U. y ) ) | 
						
							| 2 | 1 | breq1d |  |-  ( x = U. y -> ( ( A \ x ) ~<_ _om <-> ( A \ U. y ) ~<_ _om ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( x = U. y -> ( x = (/) <-> U. y = (/) ) ) | 
						
							| 4 | 2 3 | orbi12d |  |-  ( x = U. y -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ U. y ) ~<_ _om \/ U. y = (/) ) ) ) | 
						
							| 5 |  | uniss |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 6 |  | ssrab2 |  |-  { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ ~P A | 
						
							| 7 |  | sspwuni |  |-  ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ ~P A <-> U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A ) | 
						
							| 8 | 6 7 | mpbi |  |-  U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A | 
						
							| 9 | 5 8 | sstrdi |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y C_ A ) | 
						
							| 10 |  | vuniex |  |-  U. y e. _V | 
						
							| 11 | 10 | elpw |  |-  ( U. y e. ~P A <-> U. y C_ A ) | 
						
							| 12 | 9 11 | sylibr |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. ~P A ) | 
						
							| 13 |  | uni0c |  |-  ( U. y = (/) <-> A. z e. y z = (/) ) | 
						
							| 14 | 13 | notbii |  |-  ( -. U. y = (/) <-> -. A. z e. y z = (/) ) | 
						
							| 15 |  | rexnal |  |-  ( E. z e. y -. z = (/) <-> -. A. z e. y z = (/) ) | 
						
							| 16 | 14 15 | bitr4i |  |-  ( -. U. y = (/) <-> E. z e. y -. z = (/) ) | 
						
							| 17 |  | ssel2 |  |-  ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 18 |  | difeq2 |  |-  ( x = z -> ( A \ x ) = ( A \ z ) ) | 
						
							| 19 | 18 | breq1d |  |-  ( x = z -> ( ( A \ x ) ~<_ _om <-> ( A \ z ) ~<_ _om ) ) | 
						
							| 20 |  | eqeq1 |  |-  ( x = z -> ( x = (/) <-> z = (/) ) ) | 
						
							| 21 | 19 20 | orbi12d |  |-  ( x = z -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) | 
						
							| 22 | 21 | elrab |  |-  ( z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) | 
						
							| 23 | 17 22 | sylib |  |-  ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) | 
						
							| 24 | 23 | simprd |  |-  ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( ( A \ z ) ~<_ _om \/ z = (/) ) ) | 
						
							| 25 | 24 | ord |  |-  ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( -. ( A \ z ) ~<_ _om -> z = (/) ) ) | 
						
							| 26 | 25 | con1d |  |-  ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( -. z = (/) -> ( A \ z ) ~<_ _om ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) -> ( A \ z ) ~<_ _om ) | 
						
							| 28 |  | ctex |  |-  ( ( A \ z ) ~<_ _om -> ( A \ z ) e. _V ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ z ) e. _V ) | 
						
							| 30 |  | simpllr |  |-  ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> z e. y ) | 
						
							| 31 |  | elssuni |  |-  ( z e. y -> z C_ U. y ) | 
						
							| 32 |  | sscon |  |-  ( z C_ U. y -> ( A \ U. y ) C_ ( A \ z ) ) | 
						
							| 33 | 30 31 32 | 3syl |  |-  ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) C_ ( A \ z ) ) | 
						
							| 34 |  | ssdomg |  |-  ( ( A \ z ) e. _V -> ( ( A \ U. y ) C_ ( A \ z ) -> ( A \ U. y ) ~<_ ( A \ z ) ) ) | 
						
							| 35 | 29 33 34 | sylc |  |-  ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ ( A \ z ) ) | 
						
							| 36 |  | domtr |  |-  ( ( ( A \ U. y ) ~<_ ( A \ z ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ _om ) | 
						
							| 37 | 35 36 | sylancom |  |-  ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ _om ) | 
						
							| 38 | 27 37 | mpdan |  |-  ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) -> ( A \ U. y ) ~<_ _om ) | 
						
							| 39 | 38 | rexlimdva2 |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( E. z e. y -. z = (/) -> ( A \ U. y ) ~<_ _om ) ) | 
						
							| 40 | 16 39 | biimtrid |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( -. U. y = (/) -> ( A \ U. y ) ~<_ _om ) ) | 
						
							| 41 | 40 | con1d |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( -. ( A \ U. y ) ~<_ _om -> U. y = (/) ) ) | 
						
							| 42 | 41 | orrd |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( ( A \ U. y ) ~<_ _om \/ U. y = (/) ) ) | 
						
							| 43 | 4 12 42 | elrabd |  |-  ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 44 | 43 | ax-gen |  |-  A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 45 |  | difeq2 |  |-  ( x = y -> ( A \ x ) = ( A \ y ) ) | 
						
							| 46 | 45 | breq1d |  |-  ( x = y -> ( ( A \ x ) ~<_ _om <-> ( A \ y ) ~<_ _om ) ) | 
						
							| 47 |  | eqeq1 |  |-  ( x = y -> ( x = (/) <-> y = (/) ) ) | 
						
							| 48 | 46 47 | orbi12d |  |-  ( x = y -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ y ) ~<_ _om \/ y = (/) ) ) ) | 
						
							| 49 | 48 | elrab |  |-  ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) ) | 
						
							| 50 |  | ssinss1 |  |-  ( y C_ A -> ( y i^i z ) C_ A ) | 
						
							| 51 |  | vex |  |-  y e. _V | 
						
							| 52 | 51 | elpw |  |-  ( y e. ~P A <-> y C_ A ) | 
						
							| 53 | 51 | inex1 |  |-  ( y i^i z ) e. _V | 
						
							| 54 | 53 | elpw |  |-  ( ( y i^i z ) e. ~P A <-> ( y i^i z ) C_ A ) | 
						
							| 55 | 50 52 54 | 3imtr4i |  |-  ( y e. ~P A -> ( y i^i z ) e. ~P A ) | 
						
							| 56 | 55 | ad2antrr |  |-  ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( y i^i z ) e. ~P A ) | 
						
							| 57 |  | difindi |  |-  ( A \ ( y i^i z ) ) = ( ( A \ y ) u. ( A \ z ) ) | 
						
							| 58 |  | unctb |  |-  ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( ( A \ y ) u. ( A \ z ) ) ~<_ _om ) | 
						
							| 59 | 57 58 | eqbrtrid |  |-  ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( A \ ( y i^i z ) ) ~<_ _om ) | 
						
							| 60 | 59 | orcd |  |-  ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) | 
						
							| 61 |  | ineq1 |  |-  ( y = (/) -> ( y i^i z ) = ( (/) i^i z ) ) | 
						
							| 62 |  | 0in |  |-  ( (/) i^i z ) = (/) | 
						
							| 63 | 61 62 | eqtrdi |  |-  ( y = (/) -> ( y i^i z ) = (/) ) | 
						
							| 64 | 63 | olcd |  |-  ( y = (/) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) | 
						
							| 65 |  | ineq2 |  |-  ( z = (/) -> ( y i^i z ) = ( y i^i (/) ) ) | 
						
							| 66 |  | in0 |  |-  ( y i^i (/) ) = (/) | 
						
							| 67 | 65 66 | eqtrdi |  |-  ( z = (/) -> ( y i^i z ) = (/) ) | 
						
							| 68 | 67 | olcd |  |-  ( z = (/) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) | 
						
							| 69 | 60 64 68 | ccase2 |  |-  ( ( ( ( A \ y ) ~<_ _om \/ y = (/) ) /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) | 
						
							| 70 | 69 | ad2ant2l |  |-  ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) | 
						
							| 71 | 56 70 | jca |  |-  ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) | 
						
							| 72 | 49 22 71 | syl2anb |  |-  ( ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) -> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) | 
						
							| 73 |  | difeq2 |  |-  ( x = ( y i^i z ) -> ( A \ x ) = ( A \ ( y i^i z ) ) ) | 
						
							| 74 | 73 | breq1d |  |-  ( x = ( y i^i z ) -> ( ( A \ x ) ~<_ _om <-> ( A \ ( y i^i z ) ) ~<_ _om ) ) | 
						
							| 75 |  | eqeq1 |  |-  ( x = ( y i^i z ) -> ( x = (/) <-> ( y i^i z ) = (/) ) ) | 
						
							| 76 | 74 75 | orbi12d |  |-  ( x = ( y i^i z ) -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) | 
						
							| 77 | 76 | elrab |  |-  ( ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) | 
						
							| 78 | 72 77 | sylibr |  |-  ( ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) -> ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 79 | 78 | rgen2 |  |-  A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } | 
						
							| 80 | 44 79 | pm3.2i |  |-  ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 81 |  | pwexg |  |-  ( A e. V -> ~P A e. _V ) | 
						
							| 82 |  | rabexg |  |-  ( ~P A e. _V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. _V ) | 
						
							| 83 |  | istopg |  |-  ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. _V -> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top <-> ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) ) | 
						
							| 84 | 81 82 83 | 3syl |  |-  ( A e. V -> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top <-> ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) ) | 
						
							| 85 | 80 84 | mpbiri |  |-  ( A e. V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top ) | 
						
							| 86 |  | difeq2 |  |-  ( x = A -> ( A \ x ) = ( A \ A ) ) | 
						
							| 87 |  | difid |  |-  ( A \ A ) = (/) | 
						
							| 88 | 86 87 | eqtrdi |  |-  ( x = A -> ( A \ x ) = (/) ) | 
						
							| 89 | 88 | breq1d |  |-  ( x = A -> ( ( A \ x ) ~<_ _om <-> (/) ~<_ _om ) ) | 
						
							| 90 |  | eqeq1 |  |-  ( x = A -> ( x = (/) <-> A = (/) ) ) | 
						
							| 91 | 89 90 | orbi12d |  |-  ( x = A -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( (/) ~<_ _om \/ A = (/) ) ) ) | 
						
							| 92 |  | pwidg |  |-  ( A e. V -> A e. ~P A ) | 
						
							| 93 |  | omex |  |-  _om e. _V | 
						
							| 94 | 93 | 0dom |  |-  (/) ~<_ _om | 
						
							| 95 | 94 | orci |  |-  ( (/) ~<_ _om \/ A = (/) ) | 
						
							| 96 | 95 | a1i |  |-  ( A e. V -> ( (/) ~<_ _om \/ A = (/) ) ) | 
						
							| 97 | 91 92 96 | elrabd |  |-  ( A e. V -> A e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 98 |  | elssuni |  |-  ( A e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> A C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 99 | 97 98 | syl |  |-  ( A e. V -> A C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 100 | 8 | a1i |  |-  ( A e. V -> U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A ) | 
						
							| 101 | 99 100 | eqssd |  |-  ( A e. V -> A = U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) | 
						
							| 102 |  | istopon |  |-  ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. ( TopOn ` A ) <-> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top /\ A = U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) | 
						
							| 103 | 85 101 102 | sylanbrc |  |-  ( A e. V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. ( TopOn ` A ) ) |