| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdivcncf.1 |  |-  F = ( x e. ( CC \ { 0 } ) |-> ( A / x ) ) | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 3 | 2 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 4 | 3 | a1i |  |-  ( A e. CC -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 5 |  | difss |  |-  ( CC \ { 0 } ) C_ CC | 
						
							| 6 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) | 
						
							| 7 | 4 5 6 | sylancl |  |-  ( A e. CC -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) | 
						
							| 8 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 9 | 7 4 8 | cnmptc |  |-  ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 10 | 7 | cnmptid |  |-  ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) | 
						
							| 12 | 2 11 | divcn |  |-  / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 13 | 12 | a1i |  |-  ( A e. CC -> / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 14 | 7 9 10 13 | cnmpt12f |  |-  ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> ( A / x ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 15 |  | ssid |  |-  CC C_ CC | 
						
							| 16 | 3 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 17 | 2 11 16 | cncfcn |  |-  ( ( ( CC \ { 0 } ) C_ CC /\ CC C_ CC ) -> ( ( CC \ { 0 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 18 | 5 15 17 | mp2an |  |-  ( ( CC \ { 0 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 19 | 14 1 18 | 3eltr4g |  |-  ( A e. CC -> F e. ( ( CC \ { 0 } ) -cn-> CC ) ) |