| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemb.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemb.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemb.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cdlemb.u |  |-  .1. = ( 1. ` K ) | 
						
							| 5 |  | cdlemb.c |  |-  C = (  | 
						
							| 6 |  | cdlemb.a |  |-  A = ( Atoms ` K ) | 
						
							| 7 |  | simp11 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> K e. HL ) | 
						
							| 8 |  | simp12 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> P e. A ) | 
						
							| 9 |  | simp13 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> Q e. A ) | 
						
							| 10 |  | simp2l |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> X e. B ) | 
						
							| 11 |  | simp2r |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> P =/= Q ) | 
						
							| 12 |  | simp31 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> X C .1. ) | 
						
							| 13 |  | simp32 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> -. P .<_ X ) | 
						
							| 14 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 15 | 1 2 3 14 4 5 6 | 1cvrat |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P =/= Q /\ X C .1. /\ -. P .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) e. A ) | 
						
							| 16 | 7 8 9 10 11 12 13 15 | syl133anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) e. A ) | 
						
							| 17 | 7 | hllatd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> K e. Lat ) | 
						
							| 18 | 1 6 | atbase |  |-  ( P e. A -> P e. B ) | 
						
							| 19 | 8 18 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> P e. B ) | 
						
							| 20 | 1 6 | atbase |  |-  ( Q e. A -> Q e. B ) | 
						
							| 21 | 9 20 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> Q e. B ) | 
						
							| 22 | 1 3 | latjcl |  |-  ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) | 
						
							| 23 | 17 19 21 22 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( P .\/ Q ) e. B ) | 
						
							| 24 | 1 2 14 | latmle2 |  |-  ( ( K e. Lat /\ ( P .\/ Q ) e. B /\ X e. B ) -> ( ( P .\/ Q ) ( meet ` K ) X ) .<_ X ) | 
						
							| 25 | 17 23 10 24 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) .<_ X ) | 
						
							| 26 |  | eqid |  |-  ( lt ` K ) = ( lt ` K ) | 
						
							| 27 | 1 2 26 4 5 6 | 1cvratlt |  |-  ( ( ( K e. HL /\ ( ( P .\/ Q ) ( meet ` K ) X ) e. A /\ X e. B ) /\ ( X C .1. /\ ( ( P .\/ Q ) ( meet ` K ) X ) .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) ( lt ` K ) X ) | 
						
							| 28 | 7 16 10 12 25 27 | syl32anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) ( lt ` K ) X ) | 
						
							| 29 | 1 26 6 | 2atlt |  |-  ( ( ( K e. HL /\ ( ( P .\/ Q ) ( meet ` K ) X ) e. A /\ X e. B ) /\ ( ( P .\/ Q ) ( meet ` K ) X ) ( lt ` K ) X ) -> E. u e. A ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) | 
						
							| 30 | 7 16 10 28 29 | syl31anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> E. u e. A ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) | 
						
							| 31 |  | simpl11 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> K e. HL ) | 
						
							| 32 |  | simpl12 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> P e. A ) | 
						
							| 33 |  | simprl |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> u e. A ) | 
						
							| 34 |  | simpl32 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> -. P .<_ X ) | 
						
							| 35 |  | simprrr |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> u ( lt ` K ) X ) | 
						
							| 36 |  | simpl2l |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> X e. B ) | 
						
							| 37 | 2 26 | pltle |  |-  ( ( K e. HL /\ u e. A /\ X e. B ) -> ( u ( lt ` K ) X -> u .<_ X ) ) | 
						
							| 38 | 31 33 36 37 | syl3anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( u ( lt ` K ) X -> u .<_ X ) ) | 
						
							| 39 | 35 38 | mpd |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> u .<_ X ) | 
						
							| 40 |  | breq1 |  |-  ( P = u -> ( P .<_ X <-> u .<_ X ) ) | 
						
							| 41 | 39 40 | syl5ibrcom |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( P = u -> P .<_ X ) ) | 
						
							| 42 | 41 | necon3bd |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( -. P .<_ X -> P =/= u ) ) | 
						
							| 43 | 34 42 | mpd |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> P =/= u ) | 
						
							| 44 | 2 3 6 | hlsupr |  |-  ( ( ( K e. HL /\ P e. A /\ u e. A ) /\ P =/= u ) -> E. r e. A ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) | 
						
							| 45 | 31 32 33 43 44 | syl31anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> E. r e. A ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) | 
						
							| 46 |  | eqid |  |-  ( ( P .\/ Q ) ( meet ` K ) X ) = ( ( P .\/ Q ) ( meet ` K ) X ) | 
						
							| 47 | 1 2 3 4 5 6 26 14 46 | cdlemblem |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) /\ ( r e. A /\ ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) | 
						
							| 48 | 47 | 3exp |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) -> ( ( r e. A /\ ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) ) | 
						
							| 49 | 48 | exp4a |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) -> ( r e. A -> ( ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) ) ) | 
						
							| 50 | 49 | imp |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( r e. A -> ( ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) ) | 
						
							| 51 | 50 | reximdvai |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( E. r e. A ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) -> E. r e. A ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) | 
						
							| 52 | 45 51 | mpd |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> E. r e. A ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) | 
						
							| 53 | 30 52 | rexlimddv |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> E. r e. A ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) |