Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemc3.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemc3.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemc3.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemc3.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemc3.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemc3.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemc3.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
10 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) |
11 |
1 2 3 4 5 6 7
|
cdlemc6 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) ) |
12 |
8 9 10 11
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) ) |
13 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
15 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> -. Q .<_ ( P .\/ ( F ` P ) ) ) |
16 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( F ` P ) =/= P ) |
17 |
1 2 3 4 5 6 7
|
cdlemc5 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( -. Q .<_ ( P .\/ ( F ` P ) ) /\ ( F ` P ) =/= P ) ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) ) |
18 |
13 14 15 16 17
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) ) |
19 |
12 18
|
pm2.61dane |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) ) |