| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemc3.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemc3.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemc3.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemc3.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemc3.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemc3.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemc3.r | 
							 |-  R = ( ( trL ` K ) ` W )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7
							 | 
							cdlemc6 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> -. Q .<_ ( P .\/ ( F ` P ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( F ` P ) =/= P )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7
							 | 
							cdlemc5 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( -. Q .<_ ( P .\/ ( F ` P ) ) /\ ( F ` P ) =/= P ) ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) )  | 
						
						
							| 18 | 
							
								13 14 15 16 17
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) =/= P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							pm2.61dane | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) )  |