| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemc3.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemc3.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemc3.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemc3.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemc3.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemc3.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemc3.r | 
							 |-  R = ( ( trL ` K ) ` W )  | 
						
						
							| 8 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> K e. HL )  | 
						
						
							| 9 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> P e. A )  | 
						
						
							| 10 | 
							
								
							 | 
							simp23l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> Q e. A )  | 
						
						
							| 11 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P .\/ Q ) = ( Q .\/ P ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q ./\ ( P .\/ Q ) ) = ( Q ./\ ( Q .\/ P ) ) )  | 
						
						
							| 14 | 
							
								8
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> K e. Lat )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 16 | 
							
								15 4
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> Q e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								15 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> P e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								15 2 3
							 | 
							latabs2 | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( Q ./\ ( Q .\/ P ) ) = Q )  | 
						
						
							| 21 | 
							
								14 17 19 20
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q ./\ ( Q .\/ P ) ) = Q )  | 
						
						
							| 22 | 
							
								13 21
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q ./\ ( P .\/ Q ) ) = Q )  | 
						
						
							| 23 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> F e. T )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							 |-  ( 0. ` K ) = ( 0. ` K )  | 
						
						
							| 28 | 
							
								1 27 4 5 6 7
							 | 
							trl0 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) = P ) ) -> ( R ` F ) = ( 0. ` K ) )  | 
						
						
							| 29 | 
							
								23 24 25 26 28
							 | 
							syl112anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( R ` F ) = ( 0. ` K ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = ( Q .\/ ( 0. ` K ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 32 | 
							
								8 31
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> K e. OL )  | 
						
						
							| 33 | 
							
								15 2 27
							 | 
							olj01 | 
							 |-  ( ( K e. OL /\ Q e. ( Base ` K ) ) -> ( Q .\/ ( 0. ` K ) ) = Q )  | 
						
						
							| 34 | 
							
								32 17 33
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( 0. ` K ) ) = Q )  | 
						
						
							| 35 | 
							
								30 34
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = Q )  | 
						
						
							| 36 | 
							
								26
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ ( ( P .\/ Q ) ./\ W ) ) )  | 
						
						
							| 37 | 
							
								15 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 38 | 
							
								8 9 10 37
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 39 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> W e. H )  | 
						
						
							| 40 | 
							
								15 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> W e. ( Base ` K ) )  | 
						
						
							| 42 | 
							
								15 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								14 38 41 42
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 44 | 
							
								15 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) -> ( P .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( ( P .\/ Q ) ./\ W ) .\/ P ) )  | 
						
						
							| 45 | 
							
								14 19 43 44
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( ( P .\/ Q ) ./\ W ) .\/ P ) )  | 
						
						
							| 46 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) )  | 
						
						
							| 47 | 
							
								8 9 10 46
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> P .<_ ( P .\/ Q ) )  | 
						
						
							| 48 | 
							
								15 1 2 3 4
							 | 
							atmod2i1 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ Q ) ) -> ( ( ( P .\/ Q ) ./\ W ) .\/ P ) = ( ( P .\/ Q ) ./\ ( W .\/ P ) ) )  | 
						
						
							| 49 | 
							
								8 9 38 41 47 48
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( ( P .\/ Q ) ./\ W ) .\/ P ) = ( ( P .\/ Q ) ./\ ( W .\/ P ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 51 | 
							
								1 2 50 4 5
							 | 
							lhpjat1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = ( 1. ` K ) )  | 
						
						
							| 52 | 
							
								8 39 24 51
							 | 
							syl21anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( W .\/ P ) = ( 1. ` K ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ Q ) ./\ ( W .\/ P ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 54 | 
							
								15 3 50
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) )  | 
						
						
							| 55 | 
							
								32 38 54
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) )  | 
						
						
							| 56 | 
							
								49 53 55
							 | 
							3eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( ( P .\/ Q ) ./\ W ) .\/ P ) = ( P .\/ Q ) )  | 
						
						
							| 57 | 
							
								36 45 56
							 | 
							3eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ Q ) )  | 
						
						
							| 58 | 
							
								35 57
							 | 
							oveq12d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) = ( Q ./\ ( P .\/ Q ) ) )  | 
						
						
							| 59 | 
							
								1 4 5 6
							 | 
							ltrnateq | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = Q )  | 
						
						
							| 60 | 
							
								22 58 59
							 | 
							3eqtr4rd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) )  |