Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemc3.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemc3.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemc3.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemc3.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemc3.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemc3.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemc3.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> K e. HL ) |
9 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> P e. A ) |
10 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> Q e. A ) |
11 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
12 |
8 9 10 11
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
13 |
12
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q ./\ ( P .\/ Q ) ) = ( Q ./\ ( Q .\/ P ) ) ) |
14 |
8
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> K e. Lat ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
17 |
10 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> Q e. ( Base ` K ) ) |
18 |
15 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
19 |
9 18
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> P e. ( Base ` K ) ) |
20 |
15 2 3
|
latabs2 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( Q ./\ ( Q .\/ P ) ) = Q ) |
21 |
14 17 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q ./\ ( Q .\/ P ) ) = Q ) |
22 |
13 21
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q ./\ ( P .\/ Q ) ) = Q ) |
23 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
24 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
25 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> F e. T ) |
26 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) |
27 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
28 |
1 27 4 5 6 7
|
trl0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) = P ) ) -> ( R ` F ) = ( 0. ` K ) ) |
29 |
23 24 25 26 28
|
syl112anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( R ` F ) = ( 0. ` K ) ) |
30 |
29
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = ( Q .\/ ( 0. ` K ) ) ) |
31 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
32 |
8 31
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> K e. OL ) |
33 |
15 2 27
|
olj01 |
|- ( ( K e. OL /\ Q e. ( Base ` K ) ) -> ( Q .\/ ( 0. ` K ) ) = Q ) |
34 |
32 17 33
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( 0. ` K ) ) = Q ) |
35 |
30 34
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( R ` F ) ) = Q ) |
36 |
26
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
37 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
38 |
8 9 10 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
39 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> W e. H ) |
40 |
15 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
41 |
39 40
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> W e. ( Base ` K ) ) |
42 |
15 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
43 |
14 38 41 42
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
44 |
15 2
|
latjcom |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) -> ( P .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( ( P .\/ Q ) ./\ W ) .\/ P ) ) |
45 |
14 19 43 44
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( P .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( ( P .\/ Q ) ./\ W ) .\/ P ) ) |
46 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) ) |
47 |
8 9 10 46
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> P .<_ ( P .\/ Q ) ) |
48 |
15 1 2 3 4
|
atmod2i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ Q ) ) -> ( ( ( P .\/ Q ) ./\ W ) .\/ P ) = ( ( P .\/ Q ) ./\ ( W .\/ P ) ) ) |
49 |
8 9 38 41 47 48
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( ( P .\/ Q ) ./\ W ) .\/ P ) = ( ( P .\/ Q ) ./\ ( W .\/ P ) ) ) |
50 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
51 |
1 2 50 4 5
|
lhpjat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = ( 1. ` K ) ) |
52 |
8 39 24 51
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( W .\/ P ) = ( 1. ` K ) ) |
53 |
52
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ Q ) ./\ ( W .\/ P ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) ) |
54 |
15 3 50
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
55 |
32 38 54
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
56 |
49 53 55
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( ( P .\/ Q ) ./\ W ) .\/ P ) = ( P .\/ Q ) ) |
57 |
36 45 56
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ Q ) ) |
58 |
35 57
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) = ( Q ./\ ( P .\/ Q ) ) ) |
59 |
1 4 5 6
|
ltrnateq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = Q ) |
60 |
22 58 59
|
3eqtr4rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = ( ( Q .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) ) |