| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd1.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd1.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd1.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd1.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd1.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> K e. HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simpr1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> P e. A )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr2l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> Q e. A )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr31 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R e. A )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr32 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> P =/= Q )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr33 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> -. R .<_ ( P .\/ Q ) )  | 
						
						
							| 12 | 
							
								1 2 3 4
							 | 
							2llnma2 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R )  | 
						
						
							| 13 | 
							
								6 7 8 9 10 11 12
							 | 
							syl132anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = R )  | 
						
						
							| 14 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> K e. Lat )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 17 | 
							
								16 4
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								9 17
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								16 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								7 19
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								16 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( R .\/ P ) = ( P .\/ R ) )  | 
						
						
							| 22 | 
							
								15 18 20 21
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ P ) = ( P .\/ R ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 25 | 
							
								16 1 2 3 4 5
							 | 
							cdlemc1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ R e. ( Base ` K ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( ( P .\/ R ) ./\ W ) ) = ( P .\/ R ) )  | 
						
						
							| 26 | 
							
								23 18 24 25
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( P .\/ ( ( P .\/ R ) ./\ W ) ) = ( P .\/ R ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							eqtr4d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ P ) = ( P .\/ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 28 | 
							
								16 4
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								8 28
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								16 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( R .\/ Q ) = ( Q .\/ R ) )  | 
						
						
							| 31 | 
							
								15 18 29 30
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ Q ) = ( Q .\/ R ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 33 | 
							
								16 1 2 3 4 5
							 | 
							cdlemc1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ R e. ( Base ` K ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) = ( Q .\/ R ) )  | 
						
						
							| 34 | 
							
								23 18 32 33
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) = ( Q .\/ R ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							eqtr4d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( R .\/ Q ) = ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) )  | 
						
						
							| 36 | 
							
								27 35
							 | 
							oveq12d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> ( ( R .\/ P ) ./\ ( R .\/ Q ) ) = ( ( P .\/ ( ( P .\/ R ) ./\ W ) ) ./\ ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 37 | 
							
								13 36
							 | 
							eqtr3d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R = ( ( P .\/ ( ( P .\/ R ) ./\ W ) ) ./\ ( Q .\/ ( ( Q .\/ R ) ./\ W ) ) ) )  |