Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd2.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemd2.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemd2.a |
|- A = ( Atoms ` K ) |
4 |
|
cdlemd2.h |
|- H = ( LHyp ` K ) |
5 |
|
cdlemd2.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` P ) = ( G ` P ) ) |
7 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
8 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> F e. T ) |
9 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. HL ) |
10 |
9
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. Lat ) |
11 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. A ) |
12 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> R e. A ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) ) |
15 |
9 11 12 14
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
16 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> W e. H ) |
17 |
13 4
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
18 |
16 17
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> W e. ( Base ` K ) ) |
19 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
20 |
13 19
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) |
21 |
10 15 18 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) |
22 |
13 1 19
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) .<_ W ) |
23 |
10 15 18 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) .<_ W ) |
24 |
13 1 4 5
|
ltrnval1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) ) |
25 |
7 8 21 23 24
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) ) |
26 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> G e. T ) |
27 |
13 1 4 5
|
ltrnval1 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) ) |
28 |
7 26 21 23 27
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) ) |
29 |
25 28
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) |
30 |
6 29
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( F ` P ) .\/ ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` P ) .\/ ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) ) |
31 |
13 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
32 |
11 31
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. ( Base ` K ) ) |
33 |
13 2 4 5
|
ltrnj |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` P ) .\/ ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) ) |
34 |
7 8 32 21 33
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` P ) .\/ ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) ) |
35 |
13 2 4 5
|
ltrnj |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` P ) .\/ ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) ) |
36 |
7 26 32 21 35
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` P ) .\/ ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) ) |
37 |
30 34 36
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ) |
38 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` Q ) = ( G ` Q ) ) |
39 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. A ) |
40 |
13 2 3
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
41 |
9 39 12 40
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
42 |
13 19
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) |
43 |
10 41 18 42
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) |
44 |
13 1 19
|
latmle2 |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W ) |
45 |
10 41 18 44
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W ) |
46 |
13 1 4 5
|
ltrnval1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) ) |
47 |
7 8 43 45 46
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) ) |
48 |
13 1 4 5
|
ltrnval1 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) ) |
49 |
7 26 43 45 48
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) ) |
50 |
47 49
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) |
51 |
38 50
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` Q ) .\/ ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
52 |
13 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
53 |
39 52
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. ( Base ` K ) ) |
54 |
13 2 4 5
|
ltrnj |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( Q e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` Q ) .\/ ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
55 |
7 8 53 43 54
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` Q ) .\/ ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
56 |
13 2 4 5
|
ltrnj |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( Q e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` Q ) .\/ ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
57 |
7 26 53 43 56
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` Q ) .\/ ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
58 |
51 55 57
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
59 |
37 58
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
60 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) |
61 |
10 32 21 60
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) |
62 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) |
63 |
10 53 43 62
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) |
64 |
13 19 4 5
|
ltrnm |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) ) -> ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
65 |
7 8 61 63 64
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
66 |
13 19 4 5
|
ltrnm |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) ) -> ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
67 |
7 26 61 63 66
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
68 |
59 65 67
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
69 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
70 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
71 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P =/= Q ) |
72 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
73 |
12 71 72
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) |
74 |
1 2 19 3 4
|
cdlemd1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R = ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
75 |
7 69 70 73 74
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> R = ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) |
76 |
75
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
77 |
75
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` R ) = ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) ) |
78 |
68 76 77
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( G ` R ) ) |