| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd2.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd2.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd2.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd2.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd2.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 6 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` P ) = ( G ` P ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp12l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> F e. T )  | 
						
						
							| 9 | 
							
								
							 | 
							simp11l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. HL )  | 
						
						
							| 10 | 
							
								9
							 | 
							hllatd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. Lat )  | 
						
						
							| 11 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. A )  | 
						
						
							| 12 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> R e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 14 | 
							
								13 2 3
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								9 11 12 14
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp11r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> W e. H )  | 
						
						
							| 17 | 
							
								13 4
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( meet ` K ) = ( meet ` K )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								10 15 18 20
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								13 1 19
							 | 
							latmle2 | 
							 |-  ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) .<_ W )  | 
						
						
							| 23 | 
							
								10 15 18 22
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( P .\/ R ) ( meet ` K ) W ) .<_ W )  | 
						
						
							| 24 | 
							
								13 1 4 5
							 | 
							ltrnval1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 25 | 
							
								7 8 21 23 24
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp12r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> G e. T )  | 
						
						
							| 27 | 
							
								13 1 4 5
							 | 
							ltrnval1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 28 | 
							
								7 26 21 23 27
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( ( P .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) = ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) )  | 
						
						
							| 30 | 
							
								6 29
							 | 
							oveq12d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( F ` P ) .\/ ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` P ) .\/ ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 31 | 
							
								13 3
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								11 31
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								13 2 4 5
							 | 
							ltrnj | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` P ) .\/ ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 34 | 
							
								7 8 32 21 33
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` P ) .\/ ( F ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 35 | 
							
								13 2 4 5
							 | 
							ltrnj | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` P ) .\/ ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 36 | 
							
								7 26 32 21 35
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` P ) .\/ ( G ` ( ( P .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 37 | 
							
								30 34 36
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) = ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` Q ) = ( G ` Q ) )  | 
						
						
							| 39 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. A )  | 
						
						
							| 40 | 
							
								13 2 3
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 41 | 
							
								9 39 12 40
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 42 | 
							
								13 19
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								10 41 18 42
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) )  | 
						
						
							| 44 | 
							
								13 1 19
							 | 
							latmle2 | 
							 |-  ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W )  | 
						
						
							| 45 | 
							
								10 41 18 44
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W )  | 
						
						
							| 46 | 
							
								13 1 4 5
							 | 
							ltrnval1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 47 | 
							
								7 8 43 45 46
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 48 | 
							
								13 1 4 5
							 | 
							ltrnval1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) .<_ W ) ) -> ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 49 | 
							
								7 26 43 45 48
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( ( Q .\/ R ) ( meet ` K ) W ) )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) = ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) )  | 
						
						
							| 51 | 
							
								38 50
							 | 
							oveq12d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( F ` Q ) .\/ ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` Q ) .\/ ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 52 | 
							
								13 3
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 53 | 
							
								39 52
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 54 | 
							
								13 2 4 5
							 | 
							ltrnj | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( Q e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` Q ) .\/ ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 55 | 
							
								7 8 53 43 54
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( F ` Q ) .\/ ( F ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 56 | 
							
								13 2 4 5
							 | 
							ltrnj | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( Q e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) ) -> ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` Q ) .\/ ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 57 | 
							
								7 26 53 43 56
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( ( G ` Q ) .\/ ( G ` ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 58 | 
							
								51 55 57
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) = ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 59 | 
							
								37 58
							 | 
							oveq12d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 60 | 
							
								13 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( P .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) )  | 
						
						
							| 61 | 
							
								10 32 21 60
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) )  | 
						
						
							| 62 | 
							
								13 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( Q .\/ R ) ( meet ` K ) W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) )  | 
						
						
							| 63 | 
							
								10 53 43 62
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) )  | 
						
						
							| 64 | 
							
								13 19 4 5
							 | 
							ltrnm | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) ) -> ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 65 | 
							
								7 8 61 63 64
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( F ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( F ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 66 | 
							
								13 19 4 5
							 | 
							ltrnm | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) /\ ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) e. ( Base ` K ) ) ) -> ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 67 | 
							
								7 26 61 63 66
							 | 
							syl112anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( ( G ` ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ) ( meet ` K ) ( G ` ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 68 | 
							
								59 65 67
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) = ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 70 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 71 | 
							
								
							 | 
							simp23l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P =/= Q )  | 
						
						
							| 72 | 
							
								
							 | 
							simp23r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> -. R .<_ ( P .\/ Q ) )  | 
						
						
							| 73 | 
							
								12 71 72
							 | 
							3jca | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 74 | 
							
								1 2 19 3 4
							 | 
							cdlemd1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) ) -> R = ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 75 | 
							
								7 69 70 73 74
							 | 
							syl13anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> R = ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							fveq2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( F ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 77 | 
							
								75
							 | 
							fveq2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( G ` R ) = ( G ` ( ( P .\/ ( ( P .\/ R ) ( meet ` K ) W ) ) ( meet ` K ) ( Q .\/ ( ( Q .\/ R ) ( meet ` K ) W ) ) ) ) )  | 
						
						
							| 78 | 
							
								68 76 77
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( G ` R ) )  |