| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd3.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd3.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd3.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd3.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							simp33 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simp31 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. A )  | 
						
						
							| 8 | 
							
								
							 | 
							simp32 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A )  | 
						
						
							| 9 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> P e. A )  | 
						
						
							| 10 | 
							
								
							 | 
							simp233 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> R =/= P )  | 
						
						
							| 11 | 
							
								1 2 3
							 | 
							hlatexch1 | 
							 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ P e. A ) /\ R =/= P ) -> ( R .<_ ( P .\/ S ) -> S .<_ ( P .\/ R ) ) )  | 
						
						
							| 12 | 
							
								6 7 8 9 10 11
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( P .\/ S ) -> S .<_ ( P .\/ R ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> Q e. A )  | 
						
						
							| 14 | 
							
								1 2 3
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) )  | 
						
						
							| 15 | 
							
								6 9 13 14
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> P .<_ ( P .\/ Q ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp232 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) )  | 
						
						
							| 17 | 
							
								6
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. Lat )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 19 | 
							
								18 3
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								18 3
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								18 3
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								13 23
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								18 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								17 20 24 25
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								18 1 2
							 | 
							latjle12 | 
							 |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) <-> ( P .\/ R ) .<_ ( P .\/ Q ) ) )  | 
						
						
							| 28 | 
							
								17 20 22 26 27
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) <-> ( P .\/ R ) .<_ ( P .\/ Q ) ) )  | 
						
						
							| 29 | 
							
								15 16 28
							 | 
							mpbi2and | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ R ) .<_ ( P .\/ Q ) )  | 
						
						
							| 30 | 
							
								18 3
							 | 
							atbase | 
							 |-  ( S e. A -> S e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								18 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								17 20 22 32
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 34 | 
							
								18 1
							 | 
							lattr | 
							 |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( P .\/ R ) /\ ( P .\/ R ) .<_ ( P .\/ Q ) ) -> S .<_ ( P .\/ Q ) ) )  | 
						
						
							| 35 | 
							
								17 31 33 26 34
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( S .<_ ( P .\/ R ) /\ ( P .\/ R ) .<_ ( P .\/ Q ) ) -> S .<_ ( P .\/ Q ) ) )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							mpan2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S .<_ ( P .\/ R ) -> S .<_ ( P .\/ Q ) ) )  | 
						
						
							| 37 | 
							
								12 36
							 | 
							syld | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( P .\/ S ) -> S .<_ ( P .\/ Q ) ) )  | 
						
						
							| 38 | 
							
								5 37
							 | 
							mtod | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> -. R .<_ ( P .\/ S ) )  |