| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd4.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd4.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd4.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd4.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd4.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 6 | 
							
								
							 | 
							simp11l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simp11r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> W e. H )  | 
						
						
							| 8 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp231 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P =/= Q )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							cdlemb2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> E. s e. A ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) )  | 
						
						
							| 12 | 
							
								6 7 8 9 10 11
							 | 
							syl221anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> E. s e. A ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl11 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl12 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F e. T /\ G e. T ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl13 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> R e. A )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl21 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> s e. A )  | 
						
						
							| 18 | 
							
								
							 | 
							simprrl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. s .<_ W )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( s e. A /\ -. s .<_ W ) )  | 
						
						
							| 20 | 
							
								6
							 | 
							hllatd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. Lat )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> K e. Lat )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 23 | 
							
								22 3
							 | 
							atbase | 
							 |-  ( s e. A -> s e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ad2antrl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> s e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. A )  | 
						
						
							| 26 | 
							
								22 3
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. A )  | 
						
						
							| 30 | 
							
								22 3
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simprrr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. s .<_ ( P .\/ Q ) )  | 
						
						
							| 34 | 
							
								22 1 2
							 | 
							latnlej1l | 
							 |-  ( ( K e. Lat /\ ( s e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. s .<_ ( P .\/ Q ) ) -> s =/= P )  | 
						
						
							| 35 | 
							
								34
							 | 
							necomd | 
							 |-  ( ( K e. Lat /\ ( s e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. s .<_ ( P .\/ Q ) ) -> P =/= s )  | 
						
						
							| 36 | 
							
								21 24 28 32 33 35
							 | 
							syl131anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P =/= s )  | 
						
						
							| 37 | 
							
								
							 | 
							simpl22 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpl23 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) )  | 
						
						
							| 39 | 
							
								1 2 3 4
							 | 
							cdlemd3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ s e. A /\ -. s .<_ ( P .\/ Q ) ) ) -> -. R .<_ ( P .\/ s ) )  | 
						
						
							| 40 | 
							
								13 16 37 38 15 17 33 39
							 | 
							syl133anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. R .<_ ( P .\/ s ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P =/= s /\ -. R .<_ ( P .\/ s ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							simpl3l | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F ` P ) = ( G ` P ) )  | 
						
						
							| 43 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P =/= Q )  | 
						
						
							| 44 | 
							
								43 33
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P =/= Q /\ -. s .<_ ( P .\/ Q ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5
							 | 
							cdlemd2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ s e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. s .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` s ) = ( G ` s ) )  | 
						
						
							| 47 | 
							
								13 14 17 16 37 44 45 46
							 | 
							syl331anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F ` s ) = ( G ` s ) )  | 
						
						
							| 48 | 
							
								1 2 3 4 5
							 | 
							cdlemd2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( s e. A /\ -. s .<_ W ) /\ ( P =/= s /\ -. R .<_ ( P .\/ s ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` s ) = ( G ` s ) ) ) -> ( F ` R ) = ( G ` R ) )  | 
						
						
							| 49 | 
							
								13 14 15 16 19 41 42 47 48
							 | 
							syl332anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F ` R ) = ( G ` R ) )  | 
						
						
							| 50 | 
							
								12 49
							 | 
							rexlimddv | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( G ` R ) )  |