Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd4.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemd4.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemd4.a |
|- A = ( Atoms ` K ) |
4 |
|
cdlemd4.h |
|- H = ( LHyp ` K ) |
5 |
|
cdlemd4.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. HL ) |
7 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> W e. H ) |
8 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
9 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
10 |
|
simp231 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P =/= Q ) |
11 |
1 2 3 4
|
cdlemb2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> E. s e. A ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) |
12 |
6 7 8 9 10 11
|
syl221anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> E. s e. A ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) |
13 |
|
simpl11 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simpl12 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F e. T /\ G e. T ) ) |
15 |
|
simpl13 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> R e. A ) |
16 |
|
simpl21 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
17 |
|
simprl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> s e. A ) |
18 |
|
simprrl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. s .<_ W ) |
19 |
17 18
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( s e. A /\ -. s .<_ W ) ) |
20 |
6
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> K e. Lat ) |
21 |
20
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> K e. Lat ) |
22 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
23 |
22 3
|
atbase |
|- ( s e. A -> s e. ( Base ` K ) ) |
24 |
23
|
ad2antrl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> s e. ( Base ` K ) ) |
25 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. A ) |
26 |
22 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
27 |
25 26
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P e. ( Base ` K ) ) |
28 |
27
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P e. ( Base ` K ) ) |
29 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. A ) |
30 |
22 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
31 |
29 30
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> Q e. ( Base ` K ) ) |
32 |
31
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> Q e. ( Base ` K ) ) |
33 |
|
simprrr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. s .<_ ( P .\/ Q ) ) |
34 |
22 1 2
|
latnlej1l |
|- ( ( K e. Lat /\ ( s e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. s .<_ ( P .\/ Q ) ) -> s =/= P ) |
35 |
34
|
necomd |
|- ( ( K e. Lat /\ ( s e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. s .<_ ( P .\/ Q ) ) -> P =/= s ) |
36 |
21 24 28 32 33 35
|
syl131anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P =/= s ) |
37 |
|
simpl22 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
38 |
|
simpl23 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) |
39 |
1 2 3 4
|
cdlemd3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( R e. A /\ s e. A /\ -. s .<_ ( P .\/ Q ) ) ) -> -. R .<_ ( P .\/ s ) ) |
40 |
13 16 37 38 15 17 33 39
|
syl133anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. R .<_ ( P .\/ s ) ) |
41 |
36 40
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P =/= s /\ -. R .<_ ( P .\/ s ) ) ) |
42 |
|
simpl3l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F ` P ) = ( G ` P ) ) |
43 |
10
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P =/= Q ) |
44 |
43 33
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( P =/= Q /\ -. s .<_ ( P .\/ Q ) ) ) |
45 |
|
simpl3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) |
46 |
1 2 3 4 5
|
cdlemd2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ s e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. s .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` s ) = ( G ` s ) ) |
47 |
13 14 17 16 37 44 45 46
|
syl331anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F ` s ) = ( G ` s ) ) |
48 |
1 2 3 4 5
|
cdlemd2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( s e. A /\ -. s .<_ W ) /\ ( P =/= s /\ -. R .<_ ( P .\/ s ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` s ) = ( G ` s ) ) ) -> ( F ` R ) = ( G ` R ) ) |
49 |
13 14 15 16 19 41 42 47 48
|
syl332anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( F ` R ) = ( G ` R ) ) |
50 |
12 49
|
rexlimddv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( G ` R ) ) |