| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd4.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd4.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd4.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd4.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd4.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( R = P -> ( F ` R ) = ( F ` P ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							 |-  ( R = P -> ( G ` R ) = ( G ` P ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeq12d | 
							 |-  ( R = P -> ( ( F ` R ) = ( G ` R ) <-> ( F ` P ) = ( G ` P ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpll1 | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpl21 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl22 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> P =/= Q )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> P =/= Q )  | 
						
						
							| 16 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> R .<_ ( P .\/ Q ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> R =/= P )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							3jca | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll3 | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) )  | 
						
						
							| 20 | 
							
								1 2 3 4 5
							 | 
							cdlemd4 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ R =/= P ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( G ` R ) )  | 
						
						
							| 21 | 
							
								9 11 13 18 19 20
							 | 
							syl131anc | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) /\ R =/= P ) -> ( F ` R ) = ( G ` R ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl3l | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) -> ( F ` P ) = ( G ` P ) )  | 
						
						
							| 23 | 
							
								8 21 22
							 | 
							pm2.61ne | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ R .<_ ( P .\/ Q ) ) -> ( F ` R ) = ( G ` R ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl21 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl22 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpl23 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= Q )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> -. R .<_ ( P .\/ Q ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) )  | 
						
						
							| 31 | 
							
								1 2 3 4 5
							 | 
							cdlemd2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( G ` R ) )  | 
						
						
							| 32 | 
							
								24 25 26 29 30 31
							 | 
							syl131anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F ` R ) = ( G ` R ) )  | 
						
						
							| 33 | 
							
								23 32
							 | 
							pm2.61dan | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` Q ) = ( G ` Q ) ) ) -> ( F ` R ) = ( G ` R ) )  |