| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd4.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd4.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd4.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd4.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd4.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 6 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( F ` P ) = ( G ` P ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( P .\/ ( F ` P ) ) = ( P .\/ ( G ` P ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq1d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1rl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> F e. T )  | 
						
						
							| 11 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( meet ` K ) = ( meet ` K )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W )  | 
						
						
							| 14 | 
							
								1 2 12 3 4 5 13
							 | 
							trlval2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) )  | 
						
						
							| 15 | 
							
								9 10 11 14
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp1rr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> G e. T )  | 
						
						
							| 17 | 
							
								1 2 12 3 4 5 13
							 | 
							trlval2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( trL ` K ) ` W ) ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) )  | 
						
						
							| 18 | 
							
								9 16 11 17
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( ( trL ` K ) ` W ) ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) )  | 
						
						
							| 19 | 
							
								8 15 18
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) = ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) )  | 
						
						
							| 21 | 
							
								6
							 | 
							oveq1d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) = ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							oveq12d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) ( meet ` K ) ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) ( meet ` K ) ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> -. Q .<_ ( P .\/ ( F ` P ) ) )  | 
						
						
							| 25 | 
							
								1 2 12 3 4 5 13
							 | 
							cdlemc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) -> ( F ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) ( meet ` K ) ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 26 | 
							
								9 10 11 23 24 25
							 | 
							syl131anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( F ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) ( meet ` K ) ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							oveq2 | 
							 |-  ( ( F ` P ) = ( G ` P ) -> ( P .\/ ( F ` P ) ) = ( P .\/ ( G ` P ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							breq2d | 
							 |-  ( ( F ` P ) = ( G ` P ) -> ( Q .<_ ( P .\/ ( F ` P ) ) <-> Q .<_ ( P .\/ ( G ` P ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							notbid | 
							 |-  ( ( F ` P ) = ( G ` P ) -> ( -. Q .<_ ( P .\/ ( F ` P ) ) <-> -. Q .<_ ( P .\/ ( G ` P ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							biimpd | 
							 |-  ( ( F ` P ) = ( G ` P ) -> ( -. Q .<_ ( P .\/ ( F ` P ) ) -> -. Q .<_ ( P .\/ ( G ` P ) ) ) )  | 
						
						
							| 31 | 
							
								6 24 30
							 | 
							sylc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> -. Q .<_ ( P .\/ ( G ` P ) ) )  | 
						
						
							| 32 | 
							
								1 2 12 3 4 5 13
							 | 
							cdlemc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( G ` P ) ) ) -> ( G ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) ( meet ` K ) ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 33 | 
							
								9 16 11 23 31 32
							 | 
							syl131anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( G ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) ( meet ` K ) ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) )  | 
						
						
							| 34 | 
							
								22 26 33
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( F ` Q ) = ( G ` Q ) )  |