Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd4.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemd4.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemd4.a |
|- A = ( Atoms ` K ) |
4 |
|
cdlemd4.h |
|- H = ( LHyp ` K ) |
5 |
|
cdlemd4.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( F ` P ) = ( G ` P ) ) |
7 |
6
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( P .\/ ( F ` P ) ) = ( P .\/ ( G ` P ) ) ) |
8 |
7
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
9 |
|
simp1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( K e. HL /\ W e. H ) ) |
10 |
|
simp1rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> F e. T ) |
11 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( P e. A /\ -. P .<_ W ) ) |
12 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
13 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
14 |
1 2 12 3 4 5 13
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) ) |
15 |
9 10 11 14
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) ) |
16 |
|
simp1rr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> G e. T ) |
17 |
1 2 12 3 4 5 13
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( trL ` K ) ` W ) ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
18 |
9 16 11 17
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( ( trL ` K ) ` W ) ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
19 |
8 15 18
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) |
20 |
19
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) = ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) ) |
21 |
6
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) = ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) |
22 |
20 21
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) ( meet ` K ) ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) ( meet ` K ) ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) ) |
23 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
24 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> -. Q .<_ ( P .\/ ( F ` P ) ) ) |
25 |
1 2 12 3 4 5 13
|
cdlemc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) -> ( F ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) ( meet ` K ) ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) ) |
26 |
9 10 11 23 24 25
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( F ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` F ) ) ( meet ` K ) ( ( F ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) ) |
27 |
|
oveq2 |
|- ( ( F ` P ) = ( G ` P ) -> ( P .\/ ( F ` P ) ) = ( P .\/ ( G ` P ) ) ) |
28 |
27
|
breq2d |
|- ( ( F ` P ) = ( G ` P ) -> ( Q .<_ ( P .\/ ( F ` P ) ) <-> Q .<_ ( P .\/ ( G ` P ) ) ) ) |
29 |
28
|
notbid |
|- ( ( F ` P ) = ( G ` P ) -> ( -. Q .<_ ( P .\/ ( F ` P ) ) <-> -. Q .<_ ( P .\/ ( G ` P ) ) ) ) |
30 |
29
|
biimpd |
|- ( ( F ` P ) = ( G ` P ) -> ( -. Q .<_ ( P .\/ ( F ` P ) ) -> -. Q .<_ ( P .\/ ( G ` P ) ) ) ) |
31 |
6 24 30
|
sylc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> -. Q .<_ ( P .\/ ( G ` P ) ) ) |
32 |
1 2 12 3 4 5 13
|
cdlemc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ -. Q .<_ ( P .\/ ( G ` P ) ) ) -> ( G ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) ( meet ` K ) ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) ) |
33 |
9 16 11 23 31 32
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( G ` Q ) = ( ( Q .\/ ( ( ( trL ` K ) ` W ) ` G ) ) ( meet ` K ) ( ( G ` P ) .\/ ( ( P .\/ Q ) ( meet ` K ) W ) ) ) ) |
34 |
22 26 33
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ -. Q .<_ ( P .\/ ( F ` P ) ) ) /\ ( F ` P ) = ( G ` P ) ) -> ( F ` Q ) = ( G ` Q ) ) |